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Abstract

We study a model of decentralised bilateral interactions in a small market where one of the

sellers has private information about her value. There are two identical buyers and another

seller, apart from the informed one, whose valuation is commonly known to be in between

the two possible valuations of the informed seller. This represents an attempt to model

alternatives to current partners on both sides of the market. We consider an infinite horizon

game with simultaneous one-sided offers and simultaneous responses. We show that as the

discount factor goes to 1, the outcome of any stationary PBE of the game is unique and

prices in all transactions converge to the same value. We then characterise one such PBE of

the game.

JEL Classification Numbers: C78, D82

Keywords: Bilateral Bargaining, Incomplete information, Outside options, Coase con-
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1 Introduction

This paper studies a small market in which one of the players has private information about

her valuation. As such, it is a first step in combining the literature on (bilateral) trading

with incomplete information with that on market outcomes obtained through decentralised

bilateral bargaining.

We shall discuss the relevant literature in detail later on in the introduction. Here we

summarise the motivation for studying this problem.

One of the most important features in the study of bargaining is the role of “outside op-

tions” in determining the bargaining solution. There have been several different approaches

modelling what these options are, starting with treating alternatives to the current bar-

gaining game as exogenously given and always available. Accounts of negotiation directed

towards practitioners and policy-oriented academics, like Raiffa’s masterly “The Art and

Science of Negotiation”,([34]) have emphasised the key role of the “Best Alternative to the

Negotiated Agreement” and mentioned the role of searching for such alternatives in prepar-

ing for negotiations. Search for outside options has also been considered, as well as search

for bargaining partners in a general coalition formation context.

Proceeding more or less in parallel, there has been considerable work on bargaining with

incomplete information. The major success of this work has been the complete analysis of

the bargaining game in which the seller has private information about the minimum offer

she is willing to accept and the buyer, with only the common knowledge of the probability

distribution from which the seller’s reservation price is drawn, makes repeated offers which

the seller can accept or reject; each rejection takes the game to another period and time is

discounted at a common rate by both parties1. With the roles of the seller and buyer reversed,

this has also been part of the development of the foundations of dynamic monopoly and the

Coase conjecture 2.

One question that naturally arises is: does the Coase conjecture in bilateral bargaining

with incomplete information and one-sided offers continue to hold in the presence of outside

options? In a recent paper, Board and Pycia([6]) have given a negative answer to this

question. They consider two settings. In both of them, a responder has the option of calling

1Other, more complicated, models of bargaining have also been formulated (for example, [10]), with two-
sided offers and two-sided incomplete information, but these have not usually yielded the clean results of the
game with one-sided offers and one-sided incomplete information.

2The “Coase conjecture” relevant here is the bargaining version of the dynamic monopoly problem,
namely that if an uninformed seller (who is the only player making offers) has a valuation strictly below the
informed buyer’s lowest possible valuation, the unique sequential equilibrium as the seller is allowed to make
offers frequently, has a price that converges to the lowest buyer valuation. Here we show that even if one adds
endogenous outside options for both players, a similar conclusion holds for all stationary equilibria-hence an
extended Coase conjecture holds.
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off the negotiation with its current partner and can opt for an outside option. In their first

setting, the responder takes a fixed outside option and they obtain a unique equilibrium in

which the seller charges the constant monopoly price. The presence of outside options makes

a buyer with low valuation leave the market. Hence, a sustained high-price equilibrium can

be supported since low value buyers expecting the price to be high take the outside option;

thus there is positive selection in the demand pool. In the second specification, the outside

option is obtained through a draw from a given distribution. The buyer’s outside option is

constituted by the expected value of his future search opportunities. Hence, the monopoly

price result of the first setting can be applied.

We revisit the question posed by Board and Pycia with a somewhat different formulation

of “outside options”. The usual model of an outside option treats it as a payoff obtained from

some external opportunity, either given at the beginning of the game or obtainable through

search. We seek to model these alternatives explicitly and as the result of a strategic choice

made by the players. Thus, though trades remain bilateral, a buyer can choose to make an

offer to a different seller than the one who rejected his last offer and the seller can entertain

an offer from some buyer whom she has not bargained with before. These alternatives are

internal to the model of a small market, rather than given as part of the environment. What

we do is as follows: We take the basic problem of a seller with private information and

an uninformed buyer and add another buyer-seller pair; here the new seller’s valuation is

commonly known and is different from the possible valuations of the informed seller3. The

buyers’ valuations are identical and commonly known. Specifically, the informed seller’s

valuation can either be L or H (H > L ≥ 0) and the new seller’s valuation is M such that

M ∈ (L,H). Each seller has one good and each buyer wants at most one good. This is

the simplest extension of the basic model that gives rise to outside options for each player,

though unlike the literature on exogenous outside options, only one buyer can deviate from

the incomplete information bargaining to take his outside option with the other seller (if this

other seller accepts the offer), since each seller only has one good to sell.4

In our model, buyers make offers simultaneously, each buyer choosing only one seller.5

Sellers also respond simultaneously, accepting at most one offer. A buyer whose offer is

3When we consider a continuum of possible valuations for the seller, the valuation of the known seller is
one of them.

4What do the seller’s valuations represent? (The buyers’ valuations are clear enough.) We could consider
a seller can produce a good, if contracted to do so, at a private cost of H or L and pays no cost otherwise.
Or one could consider the value she gets from keeping the object as H or L. Thus, supposing her value is
L, if she accepts a price offer p with probability α, her payoff is L(1 − α) + (p)α = (p − L)α + L.. Hence,
one can think of (p− L) as the net benefit to the seller from selling the good at price p. For the purpose of
making the decision on whether to accept or reject, the two interpretations give identical results.

5Simultaneous offers extensive forms probably capture best the essence of competition .
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accepted by a seller leaves the market with the seller and the remaining players play the

one-sided offers game with or without asymmetric information. We consider the case when

buyers’ offers are public, so that the continuation strategies can condition on both offers in

a given period and the set of players remaining6. The main result of our analysis shows

that in the incomplete information game, any stationary equilibrium must have certain

specific qualitative features. As agents become patient enough, these qualitative features

enable us to show that all price offers in any stationary equilibrium converge to

the highest possible value of the informed seller (H). We then characterise one

such stationary equilbrium. Unlike the two-player case, where there is a unique sequential

equilibrium for the “gap” case, there could be non-stationary equilibria with different out-

comes in the four-player, public offers case, though there is a unique public perfect Bayesian

equilibrium outcome with private offers.7 We note that the discussion of the features of the

stationary equilibrium, if one exists, is concerned with the properties of proposed actions oc-

curring with positive probability on the equilibrium path. To complete the analysis, we need

to show existence and here the properties of outcome paths following deviations becomes

important.

The equilibrium we construct to demonstrate existence is in (non-degenerate) randomized

behavioral strategies (as in the two-player game). As agents become patient enough, in

equilibrium competition always takes place for the seller whose valuation is commonly known.

The equilibrium behavior of beliefs is similar to the two-player asymmetric information game

and the same across public and private offers. However, the off-path behaviour sustaining

any equilibrium is different and has to take into account many more possible deviations.

The result of this paper is not confined to uncertainty described by two types of seller.

Even if the informed seller’s valuation is drawn from a continuous distribution on (L,H],

we show that the asymptotic convergence to H still holds as the unique limiting stationary

equilibrium outcome.

Related literature: The modern interest in this approach dates back to the seminal

6We also discuss private offers, in the extensions,, i.e when only the proposer and the recipient of an offer
know what it is and the only public information is the set of players remaining in the game.

7In the complete information case (see Chatterjee and Das 2015), we get a similar result. But this does
not mean the analyses are the same. In the bilateral bargaining game with complete information where the
seller has valuation H, the price is H; if it is L, the price is L. From this fact, it is non-trivial to guess that
the Coase conjecture is true, namely that for the discount factor going to 1 and the probability of a H seller
being positive the price goes to H. (This explains the large number of papers on this bilateral case.) With
four players, even with only one seller’s value being unknown, the problem is compounded by the presence
of the other alternatives. We leave out the construction of the equilibrium itself, which requires some careful
consideration of appropriate beliefs. Without this construction, of course, the equilibrium path cannot be
known to be such, so the fact that two equilibrium paths end up looking similar doesn’t mean that the
equilibria are the same.
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work of Rubinstein and Wolinsky ( [35], [36]), Binmore and Herrero ([5])and Gale ([17]),[18]).

These papers, under complete information, mostly deal with random matching in large

anonymous markets, though Rubinstein and Wolinsky (1990) is an exception. Chatterjee

and Dutta ([8]) consider strategic matching in an infinite horizon model with two buyers and

two sellers and Rubinstein bargaining, with complete information. In a companion paper

([7]), we analyse markets under complete information where the bargaining is with one-sided

offers.

There are several papers on searching for outside options, for example, Chikte and Desh-

mukh ([12]), Muthoo ([29]), Lee ([28]), Chatterjee and Lee ([11]). Chatterjee and Dutta ([9])

study a similar setting as this paper but with sequential offers by buyers.

A rare paper analysing outside options in asymmetric information bargaining is that by

Gantner([22]), who considers such outside options in the Chatterjee and Samuelson ([10])

model. Our model differs from hers in the choice of the basic bargaining model and in the

explicit analysis of a small market with both public and private targeted offers. (There

is competition for “outside options” too, in our model but not in hers.) Another paper,

which in a completely different setting, discusses outside options and bargaining is Atakan

and Ekmekci([1]). Their model is based on the presence of inflexible behavioral types and

matching over time. They consider the steady state equilibria of this model in which there

are inflows of different types of agents every period. Their main result shows that there

always exist equilibria where there are selective breakups and delay, which in turn leads to

inefficiency in bargaining.

Some of the main papers in one-sided asymmetric information bargaining are the well-

known ones of Sobel and Takahashi([38]), Fudenberg, Levine and Tirole ([15]), Ausubel and

Deneckere ([2]). The dynamic monopoly papers mentioned before are the ones by Gul and

Sonnenschein ([23]) and Gul, Sonnenschein and Wilson([24]).8

There are papers in very different contexts that have some of the features of this model.

For example, Swinkels [40] considers a discriminatory auction with multiple goods, private

values (and one seller) and shows convergence to a competitive equilibrium price for fixed

supply as the number of bidders and objects becomes large. We keep the numbers small,

at two on each side of the market. Other papers which have looked into somewhat related

issues but in a different environment are Fuchs and Skrzypacz ([14]), Kaya and Liu ([27])

and Horner and Vieille ([26]). We do not discuss these in detail because they are not directly

comparable to our work.

Outline of rest of the paper. The rest of the paper is organised as follows. Section

2 discusses the model in detail. The qualitative nature of the equilibrium and its detailed

8See also the review paper of Ausubel, Cramton and Deneckere ([3]).
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derivation is given in section 3, which is the heart of the paper. The asymptotic characteris-

tics of the equilibrium are obtained in Section 4. Section 5 discusses the possibility of other

equilibria, as well as the private offers case. Finally, Section 6 concludes the paper.

In Appendix (H) we discuss in detail a model where the informed seller’s valuation is

drawn from a continuous distribution on (L,H].

2 The Model

2.1 Players and payoffs

The setup we consider has two uninformed homogeneous buyers and two heterogeneous

sellers. Buyers (B1 and B2 ) have a common valuation of v for the good (the maximum

willingness to pay for a unit of the indivisible good). There are two sellers. Each of the

sellers owns one unit of the indivisible good. Sellers differ in their valuations. The first seller

(SM) has a reservation value of M which is commonly known. The other seller (SI) has a

reservation value that is private information to her. SI ’s valuation is either L or H, where,

v > H > M > L

It is commonly known by all players that the probability that SI has a reservation value of

L is π ∈ [0, 1). It is worthwhile to mention that M ∈ [L,H] constitutes the only interesting

case. If M < L (or M > H) then one has no uncertainty about which seller has the lowest

reservation value. Although our model analyses the case ofM ∈ (L,H), the same asymptotic

result will be true for M ∈ [L,H].

Players have a common discount factor δ ∈ (0, 1). If a buyer agrees on a price pj with

seller Sj at a time point t, then the buyer has an expected discounted payoff of δt−1(v− pj).

The seller’s discounted payoff is δt−1(pj − uj), where uj is the valuation of seller Sj.

2.2 The extensive form

This is an infinite horizon, multi-player bargaining game with one-sided offers and discount-

ing. The extensive form is as follows:

At each time point t = 1, 2, .., offers are made simultaneously by the buyers. The offers

are targeted. This means an offer by a buyer consists of a seller’s name (that is SI or SM) and

a price at which the buyer is willing to buy the object from the seller he has chosen. Each

buyer can make only one offer per period. Two informational structures can be considered;

one in which each seller observes all offers made ( public targeted offers) and the one (
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private targeted offers) in which each seller observes only the offers she gets. (Similarly for

the buyers, after the offers have been made-in the private offers case each buyer knows his

own offer and can observe who leaves the market.) In the present section we shall focus on

the first and consider the latter in a subsequent section. A seller can accept at most one of

the offers she receives. Acceptances or rejections are simultaneous. Once an offer is accepted,

the trade is concluded and the trading pair leaves the game. Leaving the game is publicly

observable. The remaining players proceed to the next period in which buyers again make

price offers to the sellers. As is standard in these games, time elapses between rejections and

new offers.

3 Equilibrium

We will look for Perfect Bayes Equilibrium[16] of the above described extensive form. This

requires sequential rationality at every stage of the game given beliefs and the beliefs being

compatible with Bayes’ rule whenever possible, on and off the equilibrium path. We will

mostly focus on stationary equilibria. These are the equilibria, where strategies depend

on the history only to the extent to which it is reflected in the updated value of π (the

probability that SI ’s valuation is L). Thus, at each time point, buyers’ offers depend only

on the number of players remaining and the value of π. The sellers’ responses depend on the

number of players remaining, the value of π and the offers made by the buyers.

3.1 The Benchmark Case: Complete information

Before we proceed to the analysis of the incomplete information framework, we state the

results of the above extensive form with complete information. A formal analysis of the

complete information framework has been done in a companion paper [7].

Suppose the valuation of SI is commonly known to be H. In that case there exists a

unique9 stationary equilibrium (an equilibrium in which buyers’ offers depend only on the

set of players present and the sellers’ responses depend on the set of players present and the

offers made by the buyers) in which one of the buyers (say B1) makes offers to both the

sellers with positive probability and the other buyer (B2) makes offers to SM only. Suppose

E(p) represents the expected maximum price offer to SM in equilibrium. Assuming that

there exists a unique pl ∈ (M,H) such that,

pl −M = δ(E(p)−M)10

9Up to the choice of B1 and B2
10Given the nature of the equilibrium it is evident that M(pl) is the minimum acceptable price for SM
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, the equilibrium is as follows:

1. B1 offers H to SI with probability q. With the complementary probability he makes

offers to SM . While offering to SM , B1 randomises his offers using an absolutely continuous

distribution function F1(.) with [pl, H] as the support. F1 is such that F1(H) = 1 and

F1(pl) > 0. This implies that B1 puts a mass point at pl.

2. B2 offers M to SM with probability q
′
. With the complementary probability his offers

to SM are randomised using an absolutely continuous distribution function F2(.) with [pl, H]

as the support. F2(.) is such that F2(pl) = 0 and F2(H) = 1.

It is shown in [7] that this pl exists and is unique. Also, the outcome implied by the

above equilibrium play constitutes the unique stationary equilibrium outcome and as δ → 1,

q → 0 , q
′ → 0 and pl → H

This means that as market frictions go away, we tend to get a uniform price in different

buyer-seller matches. In this paper, we show a similar asymptotic result even with incomplete

information, with a different analysis.

3.2 Equilibrium of the one-sided incomplete information game

with two players

The equilibrium of the whole game contains the analyses of the different two-player games

as essential ingredients. If a buyer-seller pair leaves the market after an agreement and the

other pair remains, we have a continuation game that is of this kind. We therefore first

review the features of the two-player game with one-sided private information and one-sided

offers.

The setting is as follows: There is a buyer with valuation v, which is common knowledge.

The seller’s valuation can either be H or L where v > H > L = 011. At each period,

conditional on no agreement being reached till then, the buyer makes the offer and the seller

(informed) responds to it by accepting or rejecting. If the offer is rejected then the value of

π is updated using Bayes’ rule and the game moves on to the next period when the buyer

again makes an offer. This process continues until an agreement is reached. The equilibrium

of this game(as described in, for example, [13]) is as follows.

For a given δ, we can construct an increasing sequence of probabilities, d(δ) = {0, d1, ....., dt, ....}
so that for any π̃ ∈ (0, 1) there exists a t ≥ 0 such that π̃ ∈ [dt, dt+1). Suppose at a particular

time point, the play of the game so far and Bayes’ Rule implies that the updated belief is

when she gets one(two) offer(s).
11L = 0 is assumed to simplify notations and calculations.
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π. Thus, there exists a t ≥ 0 such that π ∈ [dt, dt+1). The buyer then offers pt = δtH.

The H type seller rejects this offer with probability 1. The L type seller rejects this offer

with a probability that implies, through Bayes’ Rule, that the updated value of the belief

πu = dt−1. The cutoff points dt’s are such that the buyer is indifferent between offering

δtH and continuing the game for a maximum of t periods from now or offering δt−1H and

continuing the game for a maximum of t− 1 periods from now. Thus, here t means that the

game will last for at most t periods from now. The maximum number of periods for which

the game can last is given by N(δ). It is already shown in [13] that this N(δ) is uniformly

bounded above by a finite number N∗ as δ → 1.

Since we are describing a PBE for the game it is important that we specify the off-path

behavior of the players. First, the off-path behavior should be such that it sustains the

equilibrium play in the sense of making deviations by the other player unprofitable and

second, if the other player has deviated, the behavior should be equilibrium play in the

continuation game, given beliefs. We relegate these discussion to appendix (A).

Given a π, the expected payoff to the buyer vB(π) is calculated as follows:

For π ∈ [0, d1), the two-player game with one-sided asymmetric information involves the

same offer and response as the complete information game between a buyer of valuation v

and a seller of valuation H. Thus we have

vB(π) = v −H for π ∈ [0, d1)

For π ∈ [dt, dt+1), (t ≥ 1 ), we have,

vB(π) = (v − δtH)a(π, δ) + (1− a(π, δ))δ(vB(dt−1)) (1)

where a(π, δ) is the equilibrium acceptance probability of the offer δtH.

These values will be crucial for the construction of the equilibrium of the four-player

game. However, before we show the existence of a stationary equilibrium of the four player

game, we show that if a stationary equilibrium exists, then the qualitative nature of the

equilibrium is unique and also as δ → 1, outcome of any stationary equilibrium is unique.

This is described in the following subsection.

3.3 Uniqueness of the asymptotic equilibrium outcome

In this subsection, we show that prices in all stationary equilibrium outcomes, if a station-

ary equilibrium exists, must converge to the same value as δ → 1. This, together with the

construction of a stationary equilibrium elsewhere in the paper (showing existence construc-
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tively), shows that there is a unique limiting stationary equilibrium outcome. The main

result of this section is summarised in theorem (1). First, we prove the following proposition

which establishes the main result conditional on a particular kind of equilibrium being ruled

out. Later, we prove that this particular kind of equilibrium never exists.

Proposition 1 Consider the set of stationary equilibria of the four player game such that

any equilibrium belonging to this set has the property that both buyers do not make offers

only to the informed seller (SI) on the equilibrium path. As the discount factor δ → 1, all

price offers in any equilibrium belonging to this set converge to H

Proof. We prove this proposition in steps, through a series of lemmas. First, we show that

for any equilibrium belonging to the set of equilibria considered, the following lemma holds.

Lemma 1 For any π ∈ (0, 1), it is never possible to have a stationary equilibrium in the set

of equilibria considered such that both buyers offer only to SM on the equilibrium path.

Proof. Suppose it is the case that there exists a stationary equilibrium in the game with

four players such that both buyers offer only to SM . Both buyers should have a distribution

of offers to SM with a common support12 [s(π), s̄(π)]. The payoff to each buyer should then

be (v − s̄(π)) = v4(π)(say). Let vB(π) be the payoff obtained by a buyer when his offer to

SM gets rejected. This is the payoff a buyer obtains by making offers to the informed seller

in a two player game.

Consider any s ∈ [s(π), s̄(π)] and one of the buyers (say B1). If the distributions of the

offers are given by Fi for buyer i, then we have

(v − s)F2(s) + (1− F2(s))δvB(π) = v − s̄(π)

This follows from the buyer B1’s indifference condition13.

12If the upper bounds are not equal, then the buyer with the higher upper bound can profitably deviate.
On the other hand, if the lower bounds are different, then the buyer with the smaller lower bound can
profitably deviate.

13If there exists a stationary equilibrium where both buyers offer to SM only, then the lower bound of the
common support of offers is not less than the minimum acceptable price to SM in the candidate stationary
equilibrium. To see this, let p22(π) = (1 − δ)M + δE2

p(π). Suppose the lower bound of the support is
strictly less than p22(π). Let z(π) be the probability with which each buyer’s offer is strictly less than p22(π).
If v24(π) is the payoff to the buyers in this candidate equilibrium, the expected payoff to the buyer from
making an offer strictly less than p22(π) is z(π)δv24(π) + (1 − z(π))δvB(π). In equilibrium, we must have
z(π)δv24(π) + (1 − z(π))δvB(π) = v24(π). Either vB(π) > v24(π) or vB(π) ≤ v24(π). In the former case the
equality does not hold for values of δ close to 1 and in the later case the equality does not hold for any value
of δ < 1.
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Since in equilibrium, the above needs to be true for any s ∈ [s(π), s̄(π)], we must have

v − s̄(π) > δvB(π). The above equality then gives us

F2(s) =
(v − s̄(π))− δvB(π)

(v − s)− δvB(π)

Since v − s̄(π) > δvB(π), for s ∈ [s(π), s̄(π)), we have v − s > v − s̄(π) > δvB(π). This

would imply

F2(s(π)) > 0

Similarly, we can show that

F1(s(π)) > 0

In equilibrium, it is not possible for both the buyers to put mass points at the lower bound

of the support. Hence, SM cannot get two offers with probability 1. This concludes the proof

of the lemma.

For any equilibrium belonging to the set of equilibria we are considering, we know that SM

must get at least one offer with positive probability. The above lemma implies that SI also

gets at least one offer with a positive probability. We will now argue that for any equilibrium

in the set of equilibria considered, SM always accepts an equilibrium offer immediately. This

is irrespective of whether SM gets one offer or two offers.

To show this formally, consider such an equilibrium. We first define the following. Given

a π, let pi(π) be the minimum acceptable price to the seller SM in the event she gets i

(i = 1, 2) offer(s) in the considered equilibrium. We have

p1(π)−M = (1− (α(π))δ[Ep(π̃)−M ]

Ep(π̃) is the price corresponding to the expected equilibrium payoff to the seller SM in the

event she rejects the offer and the informed seller does not accept the offer. It is evident

that when the seller SM is getting one offer, the informed seller is also getting an offer. Here

α(π) is the probability with which the informed seller accepts the offer and π̃ is the updated

belief.

Similarly, we have

p2(π)−M = δ[Ep(π)−M ]

where Ep(π) is the price corresponding to the expected equilibrium payoff to SM in the event

she rejects both offers. In appendix I we argue that Ep(π) > M . The following lemma has

the consequence that SM always accepts an equilibrium offer (or highest of the equilibrium
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offers) immediately.

Lemma 2 For any π < 1, if we restrict ourselves to the set of equilibria considered, then in

any arbitrary equilibrium, it is never possible for a buyer to make an offer to SM , which is

strictly less than min{p1(π), p2(π)}.

Proof. Suppose the conclusion of the lemma does not hold, so there is such an equilibrium.

Let the payoff to the buyers from this candidate equilibrium of the four-player game be v4(π).

In appendix J we argue that v4(π) < v − p2(π). Let vB(π) be the payoff the buyer gets by

making offers to SI in a two-player game.

Consider the buyer who makes the lowest offer to SM . We label this buyer as B1 and the

lowest offer as p(π),where p(π) < min{p1(π), p2(π)}. Let q(π) be the probability with which

the other buyer makes an offer to the seller SI . Let γ(π) be the probability with which the

other buyer, conditional on making offers to the seller SM , makes an offer which is less than

p2(π). Finally, α(π) is the probability with which the informed seller accepts an offer if the

other buyer makes an offer to her. Since B1’s offer of p(π) to SM is always rejected, the

payoff to B1 from making such an offer is

{q(π)δ{α(π)(v −M) + (1− α(π))(v − Eb
p(π̃))}+ (1− q(π))δ{γ(π)v4(π) + (1− γ(π))vB(π)}

where Eb
p(π̃) is such that (v − Eb

p(π̃)) is the expected equilibrium payoff to the buyer if

the updated belief is π̃. We first argue that (v−Eb
p(π̃)) is less than or equal to (v−Ep(π̃)).

This is because since (Ep(π̃)−M) is the expected equilibrium payoff to the seller SM when

the belief is π̃, there is at least one price offer by the buyer, which is greater than or equal

to Ep(π̃). Hence, we have

δ{α(π)(v −M) + (1− α(π))(v − Eb
p(π̃))} ≤ δ{α(π)(v −M) + (1− α(π))(v − Ep(π̃))}

⇒ (v − p1(π))− δ{α(π)(v −M) + (1− α(π))(v − Eb
p(π̃))}

≥ (v − p1(π))− δ{α(π)(v −M) + (1− α(π))(v − Ep(π̃))}

Since, (v − p1(π))− δ{α(π)(v −M) + (1− α(π))(v − Ep(π̃))} = (1− δ)(v −M) > 0, we

have

(v − p1(π))− δ{α(π)(v −M) + (1− α(π))(v − Eb
p(π̃))} > 0

There are two possibilities. Either p1(π) < p2(π) or p2(π) < p1(π). If p2(π) > p1(π), then

the buyer can profitably deviate by making an offer of p1(π). The payoff from making such

an offer is

q(π)(v − p1(π)) + (1− q(π)){γ(π)δv4(π) + (1− γ(π))δvB(π)}
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Since (v−p1(π))−δ{α(π)(v−M)+(1−α)(v−Eb
p(π̃))} > 0, we can infer that this constitutes

a profitable deviation by the buyer.

Next, consider the case when p2(π) < p1(π). In this situation, the buyer can profitably

deviate by making an offer of p2(π). The payoff from making such an offer is

{q(π)δ{α(π)(v−M)+(1−α(π))(v−Eb
p(π̃))}+(1−q(π)){γ(π)(v−p2(π))+(1−γ(π))δvB(π)}

Since v4(π) < (v − p2(π)), this constitutes a profitable deviation by the buyer.

This concludes the proof of the lemma.

There are two immediate conclusions from the above lemma. First, if p2(π) < p1(π), then

it can be shown that if δ is high enough, then in equilibrium, no buyer should offer anything

less than p1(π). To show this, suppose at least one of the buyers makes an offer which is

less than p1(π) and consider the buyer who makes the lowest offer to SM . Let γ1(π) be the

probability with which the other buyer, conditional on making offers to SM , makes an offer

which is less than p1(π). The payoff to the buyer by making the lowest offer to SM is

{q(π)δ{α(π)(v −M) + (1− α)(v − Eb
p(π̃))}+ (1− q(π))δ{vB(π)}

However, if he makes an offer of p1(π) then the payoff is

{q(π)(v − p1(π)) + (1− q(π)){γ1(π)(v − p1(π)) + (1− γ1(π))δvB(π)}

We know that as δ → 1, vB(π) → v − H. Since p1(π) < H, this implies that for high δ,

γ1(π)(v−p1(π))+(1−γ1(π))δvB(π) > δvB(π). Hence, for high δ, this constitutes a profitable

deviation by the buyer.

Secondly, if p1(π) < p2(π), then only one buyer can make an offer with positive probability

that is less than p2(π). This is because, any buyer who makes an offer to SM in the range

(p1(π), p2(π)) can get the offer accepted when the seller SM gets only one offer. In that case

the offer can still get accepted if it is lowered and that will not alter the outcomes following

the rejection of the offer. Hence, the buyer can profitably deviate by making a lower offer.

Thus, in equilibrium if a buyer has to offer anything less than p2(π) to the seller SM , then

it has to be equal to p1(π). However, in equilibrium both buyers cannot put mass points at

p1(π). This shows that only one buyer can make an offer to SM which is strictly less than

p2(π).

Hence, we have argued that all offers to SM are always greater than or equal to p1(π)

and in the event SM gets two offers, both offers are never below p2(π). This shows that SM

always accepts an equilibrium offer immediately.

12



We will now show that for any equilibrium in the set of equilibria considered, the informed

seller by rejecting equilibrium offers for a finite number of periods can take the posterior to

0. This is shown in the following lemma.

Lemma 3 Suppose we restrict ourselves to the set of equilibria considered. Given a π and

δ, there exists a Tπ(δ) > 0 such that conditional on getting offers, the informed seller can

get an offer of H in Tπ(δ) periods from now by rejecting all offers she gets in between. Tπ(δ)

depends on the sequence of equilibrium offers and corresponding strategies of the responders

in the candidate equilibrium. Tπ(δ) is uniformly bounded above as δ → 1.

Proof. To prove the first part of the lemma, we show that in the candidate equilibrium,

rejection of offers by the informed seller can never lead to an upward revision of the belief14.

If it does, then it implies that the offer is such that the H-type SI accepts the offer with a

positive probability and the L-type SI rejects it with a positive probability. Since the H-type

accepts the offer with a positive probability, this means that the offer must be greater than

or equal to H (let this offer be equal to ph ≥ H ) and we have

ph −H ≥ δ(E
′ −H)

where E
′
is the price corresponding to the expected equilibrium payoff to the H-type SI

next period. Then,

ph ≥ δ(E
′
) + (1− δ)H ⇒ ph − L ≥ δ(E

′
) + (1− δ)H − L

⇒ ph − L ≥ δ(E
′ − L) + (1− δ)(H − L) > δ(E

′ − L)

This shows that the L- type SI should accept ph with probability15 1 . This is a contra-

diction to our supposition that the L-type SI rejects with some positive probability. Thus,

the belief revision following a rejection must be in the downward direction. It cannot be zero

since in that case it implies that both types reject with probability 1. This is not possible

in equilibrium.

Thus, in equilibrium, SI should always accept an offer with a positive probability. This

proves the first part of the lemma.

14We consider updating in equilibrium. Since this is about a candidate equilibrium, out of equilibrium
events could only arise from non-equilibrium offers made by the buyers. However, if we were to follow
the definition of the PBE, then no player’s action should be treated as containing information about things
which that player does not know (no-signalling-what-you-don’t-know). Hence, these out of equilibrium events
cannot lead to change in beliefs.

15This follows from the fact that from next period onwards, H-type SI can always adopt the optimal
strategy of the L-type SI . Hence, following a rejection of the offer ph, the expected equilibrium payoff to
the L-type SI is ≤ E

′ − L

13



To show that the number of rejections required to get an offer of H is uniformly bounded

above as δ → 1, we need to show that it cannot happen that the acceptance probabilities of

any sequence of equilibrium offers to SI are not uniformly bounded below as δ → 1.

In the equilibrium considered, if only one buyer makes offers to SI , then the claim of

the lemma holds. This is because of the fact that SM always accepts an equilibrium offer

immediately and hence, SI on rejecting an offer knows that the continuation game will be

a two-player game with one-sided asymmetric information. Thus, by invoking the finiteness

result of the two-player game with one-sided asymmetric information, we know that SI can

take the posterior to 0 by rejecting equilibrium offers for finite number of periods.

Consider equilibria where more than one buyer makes offers to SI . Given the set of

equilibria we have considered and the results already proved, we can posit that in such

a case, either one of the buyers is making offers only to SI and the other is randomising

between making offers to SI and SM , or both buyers are offering to both sellers with positive

probabilities.

Let pl be the minimum offer which gets accepted by SI with positive probability in an

equilibrium where two buyers offer to SI with positive probability. We will now argue that

there exists a possible outcome such that SI gets only one offer and the offer is equal to pl.

When one of the buyers is making offers to SI only, then pl must be the lower bound of the

support of his offers . In the second case, when both buyers with positive probability make

offers to SI and SM , with positive probability SI gets only one offer. Thus, there exists an

instance that SI gets the offer of pl only.

When SI gets the offer of pl only, then she knows that by rejecting that she gets back a

two- player game, which has the finiteness property. Thus there exists a T̃ (δ) > 0 such that

SI is indifferent between getting pl now and H in T̃ (δ) periods from now. This implies

pl − L = δT̃ (δ)(H − L)

From the finiteness property of the two player game with one sided asymmetric information,

we know that T̃ (δ) is uniformly bounded above as δ → 1.

Suppose there is a sequence of equilibrium offers such that the acceptance probabilities

of the offers are not bounded below as δ → 1. Let p be the initial offer of that particular

sequence. p ≥ pl. For a given δ, let T (δ) > 0 be such that, given the acceptance probabilities

of the sequence of offers, by rejecting p and subsequent equilibrium offers, SI can get H in

T (δ) periods from now. Hence, the L-type SI should be indifferent between getting p now

andH in T (δ) time periods from now. As per our supposition, T (δ) is not uniformly bounded

above as δ → 1.
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Then, we can find a δh < 1 such that for all δ ∈ (δh, 1), we have T (δ) > T̃ (δ). This gives

us

δT (δ)(H − L) < δT̃ (δ)(H − L) = pl − L ≤ p− L

Hence, the L-type SI is not indifferent between getting p now and H in T (δ) time periods

from now, contrary to our assumption.

Hence, as δ → 1, probabilities of acceptance of any sequence of equilibrium offers are

bounded below. This concludes the proof of the lemma.

The above lemma shows that any stationary equilibrium in the set of equilibria considered

possess the finiteness property. We will now show that we cannot have both buyers offering

to both sellers with positive probability. This is argued in the following lemma.

Lemma 4 In any equilibrium belonging to the set of equilibria considered, if players are

patient enough then both buyers cannot make offers to both sellers with positive probability.

Proof. From the arguments of lemma (3), we know that in an arbitrary stationary equi-

librium, any offer made to the informed seller should get accepted by the low type with a

positive probability bounded away from 0. Suppose there exists a stationary equilibrium

of the four-player game where both buyers offer to both sellers with a positive probability.

Hence, in equilibrium, if the informed seller gets offer(s), then she either gets two offers or

one offer. Since SM always accepts an offer in equilibrium immediately, SI knows that on

rejecting an offer(s) she will get another offer in at most two periods from now. Hence, from

lemma (3) we infer that if the informed seller gets one offer, then the L-type SI can expect to

get an offer of H in at most T1(π) > 0 time periods from now, by rejecting all offers she gets

in between. Similarly, if the informed seller gets two offers then the L-type SI by rejecting

both offers can expect to get an offer of H in at most T2(π) > 0 time periods from now by

rejecting all offers she gets in between. As we have argued in lemma (3), both T1(π) and

T2(π) are bounded above as δ → 1. Thus, any offer s to the informed seller in equilibrium

should satisfy

s ≥ δT1(π)H + (1− δT1(π))L ≡ s1(δ)

and

s ≥ δT2(π)H + (1− δT2(π))L ≡ s2(δ)

It is clear from the above that as δ → 1, both s1(δ) → H and s2(δ) → H. Hence, if there

is a support of offers to SI in equilibrium, then the support should collapse as δ → 1.

We will now argue that for δ high enough but δ < 1, the support in equilibrium cannot

have two or more points.
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Suppose it is possible that the support of offers to SI has two or more points. This

implies that the upper bound and the lower bound of the support are different from each

other. Let s(π) and s̄(π) be the lower and upper bound of the support respectively.

Consider a buyer who is making an offer to SI . This buyer must be indifferent between

making an offer of s(π) and s̄(π). Let q(π) be the probability with which the other buyer

makes an offer to SI . Since in equilibrium SM always accepts an offer immediately, the payoff

from making an offer of s(π) to SI is

Πs(π) = (1− q(π))[αs(π)(v − s(π)) + (1− αs(π))δvB(π
′
)]

+q(π)Es{[βs
πδ(v −M) + (1− βs

π)δv4(π
′′

s )]}

αs(π) is the acceptance probability of s(π) when SI gets the offer of s(π) only. βs
π is the

acceptance probability of the offer s to SI when she gets two offers. vB(.) and v4(.) are

the buyer’s payoffs from the two-player incomplete information game and the four player

incomplete information game respectively. For the second term of the right-hand side, we

have taken an expectation because when two offers are made, this buyer’s offer of s(π) to

SI never gets accepted and the payoff then depends on the offer made by the other buyer.

When SI gets only one offer and rejects an offer of s(π), then the updated belief is π
′
; π

′′
s

denotes the updated belief when SI rejects an offer of s ∈ (s(π), s̄(π)] and she gets two offers.

Similarly, the payoff from offering s̄(π) is

Πs̄(π) = (1−q(π))[αs̄(π)(v− s̄(π))+(1−αs̄(π))δvB(π
′′′
)]+q(π)[β2π(v− s̄(π))+(1−β2π)δv4(π

4)]

Here π
′′′
is the updated belief when SI gets one offer and rejects an offer of s̄(π). When

SI gets two offers and rejects an offer of s̄(π), the updated belief is denoted by π4. Note

that if at all SI accepts an offer, she always accepts the offer of s̄(π), if made. The quantity

αs̄(π) is the probability with which the offer of s̄(π) is accepted by SI when she gets one offer.

When SI gets two offers, then the offer of s̄(π) gets accepted with probability β2π.

As argued above, s̄(π) → H and s(π) → H as δ → 1. This implies that v4(π) → (v−H)

as δ → 1. From the result of the two player one-sided asymmetric information game, we

know that vB(π) → H as δ → 1. Since v−M > v−H, we have Πs(π) > Πs̄(π) as δ → 1. From

lemma (3) we can infer that both βs
π and β2π are positive. Hence, there exists a threshold

for δ such that if δ crosses that threshold, Πs(π) > Πs̄(π). This is not possible in equilibrium.

Thus, for high δ, the support of offers can have only one point. The same arguments hold

for the other buyer as well. Hence, each buyer while offering to SI has a one-point support.

Next, we establish that both buyers should make the same offer. If they make different offers,
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then as explained before, for δ high enough the buyer making the higher offer can profitably

deviate by making the lower offer. However, in equilibrium it is not possible to have both

buyers making the same offer to SI
16

Hence, when agents are patient enough, in equilibrium both buyers cannot offer to both

sellers with a positive probability. This concludes the proof of the lemma.

In the following lemma we show that in any stationary equilibrium of the four player

game, as players get patient enough, SM always gets offers from two buyers with a positive

probability.

Lemma 5 In any stationary equilibrium belonging to the set of equilibria considered, there

exists a threshold of δ such that if δ exceeds that threshold, both buyers make offers to SM

with positive probability.

Proof. Suppose there exists a stationary equilibrium where SM gets offers from only one

buyer, say B1. First, we argue that in such a stationary equilibrium, if the buyer offering to

SM offers something greater than or equal to M , then SM accepts it immediately. To explain

this, let pm ≥ M be the offer made by the buyer who makes offers to SM . Then, SM on

rejecting this offer either gets back a two-player game or a four-player game. In either case,

she cannot expect to get anything more than pm. Hence, she immediately accepts it. This

implies that if there is a stationary equilibrium where SM gets offers from only one buyer

then that buyer should always offer M to SM and SM immediately accepts it.

There can, therefore, be two possibilities. Either SI gets an offer from B2 only or from

both B1 and B2 with positive probability. Consider the first case. Since SM will accept the

offer immediately, B2, must be making an offer greater than or equal to pe, such that

pe = (1− δ)L+ δ(H − ϵ)

where ϵ > 0 and ϵ → 0 as δ → 1. This is because in equilibrium, if SI rejects an offer then

next period she faces a two-player game. This game has a unique equilibrium and the price

offers in that equilibrium goes to H as δ → 1.

From this we can infer that there exists a threshold of δ such that if δ exceeds that

threshold then pe > M .

Hence, B2 can profitably deviate, contradicting the hypothesis of equilibrium.

In the latter case, we know that B1 offers to both SI and SM with positive probability

and B2 makes offers only to SI . Therefore, using the result of lemma (3), if B1 has to get an

16These arguments would also work even if the supports were not taken to be symmetric. In that case,
let s(π) be the minimum of the lower bounds and s̄(π) be the maximum of the upper bounds. If these are
associated with the same buyer, then same arguments hold. If not, then the buyer with the higher upper
bound can proftibaly deviate by shifting its mass to s(π).
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offer accepted by SI , then for high values of δ that offer should be close to H and thus the

payoff to B1 from making offers to SI should be close to (v − H). On the other hand, the

payoff to B1 from making offers to SM is (v −M). However, in equilibrium, the buyer has

to be indifferent between making offers to SI and SM . Hence, it is not possible to have a

stationary equilibrium where SM gets offers from only one buyer. This concludes the proof.

From the characteristics of the restricted set of equilibria being considered, we know that

SM always gets an offer with a positive probability. The above lemma then allows us to infer

that, in any stationary equilibrium of the four player game, both buyers should offer to SM

with positive probability. From our arugments and hypothesis, we know that both buyers

cannot make offers to only one seller (SI or SM) and both buyers cannot randomise between

making offers to both sellers. Hence, we can infer that one of the buyers has to make offers

to SM only and the other buyer should randomise between making offers to SI and SM .

The following lemma now shows that for any π ∈ [0, 1), any equilibrium in this restricted

set possesses the characteristic that the price offers to all sellers approach H as δ → 1.

Lemma 6 For a given π, in any hypothesised equilibrium, price offers to all sellers go to H

as δ → 1.

Proof. Let s̄(π) be the upper bound of the support17 of offers to SM .

SM always accepts an equilibrium offer immediately. Hence, if the L-type SI rejects an

equilibrium offer, she gets back a two-player game with one-sided asymmetric information.

Thus, the buyer offering to SI in a period must offer at least pe such that

pe − L = δ(H − ϵ− L) ⇒ pe = (1− δ)L+ δ(H − ϵ)

where ϵ > 0 and ϵ → 0 as δ → 1.

Consider B1, who is randomising between making offers to SI and SM . When offering to

SI , B1 must offer pe and it must be the case that

(v − pe)α(π) + (1− α(π))δ{v − (H − ϵ)} = v − s̄(π)

where α(π) is the probability with which the offer is accepted by the informed seller. This

follows from the fact that B1 must be indifferent between offering to SI and SM . The L.H.S

of the above equality is the payoff to B1 from offering to SI and the R.H.S is the payoff to

him from offering to SM . Since in any hypothesized equilibrium, SM always gets an offer in

17The upper bound of support of offers to SM for both buyers should be the same. Else, the buyer with
the higher upper bound can profitably deviate
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period 1 and SM accepts an equilibrium offer immediately, SI , by rejecting an equilibrium

offer, always gets back a two-player game with one-sided asymmetric information. Hence, the

payoff to the buyer from offering to SI is the same as in the two-player game with one-sided

asymmetric information. This implies that

(v − pe)α(π) + (1− α(π))δ{v − (H − ϵ)} = vB(π)

Thus, we can conclude that vB(π) = v − s̄(π).

We will now show that the upper bound of the support of offers to SM is strictly greater

than pe. We have

(v − pe)− δ{v − (H − ϵ)} = v(1− δ) + δ(H − ϵ)− δ(H − ϵ)− (1− δ)L

= (1− δ)(v − L) > 0

for δ < 1. This implies that

v − pe > δ{v − (H − ϵ)}

Since (v − s̄(π)) is a convex combination of v − pe and δ{v − (H − ϵ)}, we have

v − pe > v − s̄(π) ⇒ s̄(π) > pe

Next, we will argue that as δ → 1, the support of offers to SM from any buyer is bounded

below by pe. Consider a buyer who makes an offer of pe to SM in equilibrium. Then, if qe is

the probability with which this offer gets accepted, we have

(v − pe)qe + (1− qe)δvB(π) = v − s̄(π)

This follows since SM always accepts an offer in equilibrium immediately, this buyer’s offer

to SM gets rejected only when the other buyer also makes an offer to SM .

This gives us,

qe =
(v − s̄(π))− δvB(π)

(v − pe)− δvB(π)
=

(1− δ)(v − s̄(π))

(v − pe)− δ(v − s̄(π))

⇒ qe =
1

v
v−s̄(π)

+ δs̄(π)−pe

(1−δ)(v−s̄(π))

and

qe → 0 as δ → 1
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This shows that in equilibrium, as δ → 1, any offer to SM that is less than or equal to pe

always gets rejected. Since we have argued earlier that in equilibrium, no buyer should make

an offer to SM that she always rejects, we can infer that the support of offers to SM from

any buyer is bounded below by pe as δ approaches 1. Hence, in any arbitrary stationary

equilibrium of this kind, the price offers to all sellers are bounded below by pe as δ approaches

1. However, as δ → 1, pe → H. Hence, as δ → 1, the support of offers to SM from any buyer

collapses and hence price offers to all sellers converge to H.

Thus, we have shown that for any stationary equilibrium in the set of equilibria consid-

ered, one of the buyers randomises between making offers to SM and SI and the other buyer

makes offers to SM only. Further, as δ → 1, price offers in all transactions in these stationary

equilibria go to H. This concludes the proof of the proposition.

We will now argue that there does not exist any stationary equilibrium where both buyers

offer only to SI . This is done in the following lemma.

Lemma 7 Let Π be the set of beliefs such that for π ∈ Π, it is possible to have a stationary

equilibrium where both buyers offer only to SI . The set Π is empty

Proof. We begin the proof by first showing that the set Πc is non-empty. Suppose not.

Then, for all π, it is possible to have a stationary equilibrium where both buyers make offers

only to SI . In this case, price offers can never exceed M . This is because SM does not get

any offer in the presence of all four players. Thus, if any buyer unilaterally deviates and

offers a price greater than or equal to M to SM , SM will accept it.

Let p̄ be the largest price offer, for any π, in such an equilibrium. (Clearly, such an offer

exists.) This offer is accepted by the L -type SI with probability 1, since the payoff from

rejecting can be at most δ(p̄ − L) and δ < 1. But then, in the following period, π = 0 (by

Bayes’ Theorem) and, therefore, as δ → 1, the payoff to SI from such a continuation game

is close to H − L (> M − L). Since p̄ ≤ M , the L-type SI can unilaterally deviate to get a

higher payoff and hence, this cannot be an equilibrium. This shows that Πc is non-empty.

Suppose now that Π is non-empty. Consider any π ∈ Π. As explained earlier, no

equilibrium can involve offers that are rejected by both L and H types. Therefore, the L

type must accept an offer with positive probability. This implies (by Bayes’ Theorem and

δ < 1) that the sequence of prices must be increasing. Also, by hypothesis, the price is

bounded above by M. Let p̄
′
be the largest price offer in such an equilibrium. As argued

before, p̄
′ ≤ M . There are two possibilities. Either the updated belief conditional on p̄

′
being

rejected is in Π or it is in Πc. In the former case, SI should accept the offer with probability 1

and the updated belief is π = 0, where the equilibrium price offer must be H > M, leading to

the existence of a profitable deviation, for δ sufficiently high. For the latter case, if δ is high
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then from proposition (1) we know that for any stationary equilibrium all offers converge to

H as δ → 1. Once again, this implies the existence of a profitable deviation for the L-type

SI . Hence, we cannot have Π non-empty. This concludes the proof.

We now state our main result of the paper in the theorem below

Theorem 1 In any arbitrary stationary equilibrium of the four-player game, as the discount

factor goes to 1, price offers in all transactions converge to H for all values of the prior

π ∈ [0, 1).

Proof. The proof the theorem follows directly from proposition (1) and lemma (7).

The following subsection now constructs one stationary equilibrium of the four player

game with incomplete information.

3.4 Characterisation of an equilibrium of the four-player game

with incomplete information.

In this subsection, we will characterise a particular stationary equilibrium of the incomplete

information game with four players. The analysis so far has established that any stationary

equilibrium of the game should have certain qualitative features. Here, we assume that

L = 0, for purposes of reducing notation. The main result of this subsection is described in

the following proposition.

Proposition 2 There exists a δ∗ ∈ (0, 1) such that if δ > δ∗, then for all π ∈ [0, 1) there

exists a stationary equilibrium as follows (both public and private offers:):

(i) One of the buyers (say B1) will make offers to both SI and SM with positive probability.

The other buyer B2 will make offers to SM only.

(ii) B2 while making offers to SM will put a mass point at p
′

l(π) and will have an absolutely

continuous distribution of offers from pl(π) to p̄(π) where p
′

l(π) (pl(π)) is the minimum

acceptable price to SM when she gets one(two) offer(s). For a given π, p̄(π) is the upper

bound of the price offer SM can get in the described equilibrium (p
′

l(π) < pl(π) < p̄(π)). B1

while making offers to SM will have an absolutely continuous (conditional) distribution of

offers from pl(π) to p̄(π), putting a mass point at pl(π).

(iii) B1 while making offers to SI on the equilibrium path behaves exactly in the same

manner as in the two player game with one-sided asymmetric information.

21



(iv) SI ’s behavior is identical to that in the two-player game. SM accepts the largest offer

with a payoff at least as large as the expected continuation payoff from rejecting all offers.

(v) Each buyer in equilibrium obtains a payoff of vB(π).

Remark 1 The mass points and the distribution of buyers’ offers will depend upon π though

we show that these distributions will collapse in the limit. Off the path, the analysis is

different from the two-player game because the buyers have more options to consider when

choosing actions. For the description of off-path behavior refer to Appendix(B).

Remark 2 A “road map” of the proof: We construct the equilibrium by starting from the

benchmark complete information case and showing that the complete information strategies

essentially carry over to the game where π is in a range near 0. This includes, through

the competition lemma, showing the nature of the competition among the sellers. Once π is

outside this range, the mass points and support of the randomised strategies in the candidate

equilibrium will depend upon π and these are characterised for all values of π. The equilibrium

is then extended beyond the initial range (apart from the initial range, these are functions of δ)

for sufficiently high values of δ by recursion. Finally, checking that the candidate equilibrium

is immune to unilateral deviation at any stage involves specifying out-of-equilibrium beliefs.

This is done in the appendix.

Proof. We prove this proposition in steps. (Not all of these steps are given here in order to

reduce unwieldy notation-see also the appendix.) First we derive the equilibrium for a given

value of π by assuming that there exists a threshold δ∗, such that if δ exceeds this threshold

then for each value of π, a stationary equilibrium as described above exists. Later on we will

prove this existence result.

To formally construct the equilibrium for different values of π, we need the following

lemma which we label as the competition lemma, following the terminology of [9], though

they proved it for a different model.

Consider the following sequences for t ≥ 1:

p̄t = v − [(v − δtH)α + (1− α)δ(v − p̄t−1)] (2)

p
′

t = M + δ(1− α)(p̄t−1 −M) (3)

where α ∈ (0, 1) and p̄0 = H.
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Lemma 8 There exists a δ
′ ∈ (0, 1), such that for δ > δ

′
and for all t ∈ {1, ....N(δ)}, we

have,

p̄t > p
′

t

Proof.

p̄t − p
′

t = v − [(v − δtH)α + (1− α)δ(v − p̄t−1))]−M

−δ(1− α)(p̄t−1 −M)

= (v −M)(1− δ + δα)− α(v − δtH)

= (1− δ)(v −M) + α(δv − δM − v + δtH)

= (1− δ)(v −M) + α(δtH − δM − (1− δ)v)

If we show that the second term is always positive then we are done. Note that the

coefficient of α is increasing in delta and is positive at δ = 1. Take t = N∗, where N∗ is

the upper bound on the number of periods up to which the two player game with one sided

asymmetric information (as described earlier) can continue. For t = N∗, ∃ δ
′
< 1 such that

the term is positive whenever δ > δ
′
. Since this is true for t = N∗, it will be true for all

lower values of t.

As N(δ) ≤ N∗ for any δ < 1 and for all t ∈ {1, ....N(δ)},

p̄t > p
′

t

whenever δ > δ
′
.

This concludes the proof of the lemma.

Fix a δ > δ∗. Suppose we are given a π ∈ (0, 1)18. There exists a t ≥ 0 (it is easy to see

that this t ≤ N∗ ) such that π ∈ [dt, dt+1). The sequence dτ (δ) = {0, d1, d2, ...dt..} is derived

from and is identical with the same sequence in the two-player game. Next, we evaluate

vB(π) (from the two player game). Define p̄(π) as,

p̄(π) = v − vB(π)

Define p
′

l(π) as,

p
′

l(π) = M + δ(1− a(π))[Edt−1(p)−M ] (4)

where Edt−1(p) represents the expected price offer to SM in equilibrium when the probability

that SI is of the low type is dt−1. From (4) we can posit that, in equilibrium, p
′

l(π) is the

18π = 0 is the complete information case with a H seller.
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minimum acceptable price for SM if she gets only one offer.

Lemma 9 For a given π > d1, the acceptance probability a(π, δ) of an equilibrium offer is

increasing in δ and has a limit ā(π) which is less than 1.

Proof. The acceptance probability a(π, δ) of an equilibrium offer is equal to πβ(π, δ), where

β(π, δ) is the probability with which the L-type SI accepts an equilibrium offer. From the

updating rule we know that β(π, δ) is such that the following relation is satisfied:

π(1− β(π, δ))

π(1− β(π, δ)) + (1− π)
= dt−1(δ)

From the above expression, we get

β(π, δ) =
π − dt−1(δ)

π(1− dt−1(δ))

Since d′ts have a limit as δ goes to 1, so does β(π, δ). Therefore, a(π, δ) also has a limit ā(π)

which is less than 1 for π ∈ (0, 1).

For π = dt−1, the maximum price offer to SM (according to the conjectured equilibrium)

is p̄(dt−1). This implies that Edt−1(p) < p̄(dt−1) (this will be clear from the description

below). Since a(π) ∈ (0, 1), from lemma (8) we can infer that p̄(π) > p
′

l(π). Suppose there

exists a pl(π) ∈ (p
′

l(π), p̄(π)) such that,

pl(π) = (1− δ)M + δEπ(p)

We can see that pl represents the minimum acceptable price offer for SM in the event that

he gets two offers. (Note that if SM rejects both offers, the game goes to the next period

with π remaining the same.)

From the conjectured equilibrium behavior, we derive the following19 :

1. B1 makes offers to SI with probability q(π), where

q(π) =
vB(π)(1− δ)

(v − p
′
l(π))− δvB(π)

(5)

B1 offers δ
tH to SI . With probability (1− q(π)) he makes offers to SM . The conditional dis-

tribution of offers to SM , given B1 makes an offer to this seller when the relevant probability

19We obtain these by using the indifference relations of the players when they are using randomized
behavioral strategies.

24



is π, is

F π
1 (s) =

vB(π)[1− δ(1− q(π))]− q(π)(v − s)

(1− q(π))[v − s− δvB(π)]
(6)

We can check that F π
1 (pl(π)) > 0 and F π

1 (p̄(π)) = 1. This confirms that B1 puts a mass

point at pl(π).

2. B2 offers p
′

l(π) to SM with probability q
′
(π), where

q
′
(π) =

vB(π)(1− δ)

(v − pl(π)))− δvB(π)
(7)

With probability (1− q
′
(π)) he makes offers to SM by randomizing his offers in the support

[pl(π), p̄(π)]. The conditional distribution of offers is given by

F π
2 (s) =

vB(π)[1− δ(1− q
′
(π))]− q

′
(π)(v − s)

(1− q′(π))[v − s− δvB(π)]
(8)

This completes the derivation. Appendix(B) describes the off-path play and show that

it sustains the equilibrium play

Next, we show that there exists a δ∗ such that δ
′
< δ∗ < 1 and for δ > δ∗ an equilibrium

as described above exists for all values of π ∈ [0, 1). To do these we need the following

lemmas:

Lemma 10 If π ∈ [0, d1), then the equilibrium of the game is identical to that of the bench-

mark case.

Proof. From the equilibrium of the two player game with one sided asymmetric information,

we know that for π ∈ [0, d1), buyer always offers H to the seller and the seller accepts this

with probability one. Hence this game is identical to the game between a buyer of valuation

v and a seller of valuation H, with the buyer making the offers. Thus, in the four-player

game, we will have an equilibrium identical to the one described in the benchmark case. We

conclude the proof by assigning the following values:

p
′

l(π) = M and p̄(π) = H for π ∈ [0, d1)

Lemma 11 If there exists a δ̄ ∈ (δ
′
, 1) such that for δ ≥ δ̄ and for all t < T (T < N∗} an

equilibrium exists for π ∈ [0, dt(δ)), then there exists a δ∗T ≥ δ̄ such that, for all δ ∈ (δ∗T , 1)

an equilibrium also exists for π ∈ [dT (δ), dT+1(δ)).
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Proof. We only need to show that there exists a δ∗T ≥ δ̄ such that for all δ > δ∗T and for all

π ∈ [dT (δ), d+1(δ)),there exists a pl(π) ∈ (p
′

l(π), p̄(π)) with

pl(π) = (1− δ)M + δEπ(p)

From now on we will write dT instead of dT (δ). For each δ ∈ (δ
′
, 1) we can construct

d(δ) and the equilibrium strategies as above (assuming existence). For any x ∈ (p
′

l(π), p̄(π)),

construct the function G(x) as

G(x) = x− [δEx
π(p) + (1− δ)M ]

We can infer from ([7]) that the function G(.) is monotonically increasing in x. Since Ex
π(p) <

p̄(π),

lim
x→p̄(π)

G(x) > 0

Next, we have

G(p
′

l(π)) = p
′

l(π)− [δE
p
′
l(π)

π (p) + (1− δ)M ]

By definition E
p
′
l(π)

π (p) > p
′

l(π). So for δ = 1, G(p
′

l(π))) < 0. Since G(.) is a continuous

function, there exists a δ∗T ≥ δ̄ such that for all δ > δ∗T , G(p
′

l(π))) < 0. By invoking the

Intermediate Value Theorem we can say that there is a unique x∗ ∈ (p
′

l(π), p̄(π)) such that

G(x∗) = 0. This x∗ is our required pl(π).

This concludes the proof.

From lemma (10) we know that for any δ ∈ (0, 1) an equilibrium exists for π ∈ [0, d1).
20

Using lemma (11) we can obtain δ∗t for all t ∈ {1, 2, ..., N∗}. Define δ∗ as:

δ∗ = max
1,..,N∗

δ∗T

We can do this because N∗ is finite. Lemma (10) and (11) now guarantee that whenever

δ > δ∗ an equilibrium as described above exists for all π ∈ [0, 1) .

This concludes the proof of the proposition.

4 Asymptotic characterization

In this section we show that in the equilibrium characterised, as δ → 1, price offers in all

transactions go to H. This is the unique asymptotic outcome of any stationary equilibrium

20Note that d1 is independent of δ
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of the game, as described earlier in the paper.

It has been argued earlier that as δ → 1, p
′

l(π) reaches a limit which is less than p̄(π).

From (5) we then have,

q(π) → 0 as δ → 1

Then from (6) we have,

1− F π
1 (s) =

p̄(π)− s

(1− q(π))[v − s− δvB(π)]

We have shown that q(π) → 0 as δ → 1. Hence as δ → 1, for s arbitrarily close to p̄(π), we

have

1− F π
1 (s) ≈

p̄(π)− s

p̄(π)− s
= 1

Hence the distribution collapses and pl(π) → p̄(π). From the expression of pl(π) we know

that pl(π) → Eπ(p) as δ goes to 1. Thus we can conclude that Eπ(p) approaches p̄(π). From

the two-player game with one-sided asymmetric information we know that as δ goes to 1,

p̄(π) → H, (since vB(π) goes to v−H) for any value of π. This leads us to conclude that as

δ goes to 1, Eπ(p) → H for all values of π. This in turn provides the justification of having

Edt−1(p) ≈ Ex
π(p) for high values of δ(used in the proof of lemma (11)).

From the ([7]) we know that G(p̄(π)) > 0. Hence there will be a threshold of δ such that

for all δ higher than that threshold we have G(δp̄(π)) > 0. Thus pl(π) is bounded above by

δp̄(π). (7) implies that

q
′
(π) =

1
v

vB(π)
+ δp̄(π)−pl(π)

(1−δ)vB(π)

Since pl(π) is bounded above by δp̄(π), q
′
(π) → 0 as δ goes to 1.

Thus we conclude that as δ goes to 1, prices in all transactions go to H.

Comment: It should be mentioned that we would expect the same result to be true, if,

instead of a two-point distribution, the informed type’s reservation value s is continuously

distributed in (L,H] according to some cdf G(s). Appendix (H) describes this in detail.

In the following section we discuss some extensions.

5 Extensions

In this section we consider some possible extensions by having offers to be private and by

considering a non-stationary equilibrium
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5.1 A non-stationary equilibrium

We show that with public offers we can have a non-stationary equilibrium, so that the

equilibrium constructed in the previous sections is not unique. This is based on using the

stationary equilibrium as a punishment (the essence is similar to the pooling equilibrium with

positive profits in [30]). The strategies sustaining this are described below. The strategies

will constitute an equilibrium for sufficiently high δ, as is also the case for the stationary

equilibrium.

Suppose for a given π, both the buyers offer M to SM . SM accepts this offer by selecting

each seller with probability 1
2
. If any buyer deviates, for example by offering to SI or making

a higher offer to M, then all players revert to the stationary equilibrium strategies described

above. If SM gets the equilibrium offer of M from the buyers and rejects both of them

then the buyers make the same offers in the next period and the seller SM makes the same

responses as in the current period.

Given the buyers adhere to their equilibrium strategies, the continuation payoff to SM

from rejecting all offers she gets is zero. So she has no incentive to deviate. Next, if one

of the buyers offers slightly higher than M to SM then it is optimal for her to reject both

the offers. This is because on rejection next period players will revert to the stationary

equilibrium play described above. Hence her continuation payoff is δ(Eπ(p) −M),which is

higher than the payoff from accepting.

Finally each buyer obtains an equilibrium payoff of 1
2
(v − M) + 1

2
δvB(π). If a buyer

deviates then, according to the strategies specified, SM should reject the higher offer if the

payoff from accepting it is strictly less than the continuation payoff from rejecting(which is

the one period discounted value of the payoff from stationary equilibrium). Hence if a buyer

wants SM to accept an offer higher than M then his offer p
′
should satisfy,

p
′
= δEπ(p) + (1− δ)M

The payoff of the deviating buyer will then be δ(v − Eπ(p)) + (1 − δ)(v − M). As δ → 1,

δ(v − Eπ(p)) + (1− δ)(v −M) ≈ δ(v − p̄(π) + (1− δ)(v −M)

= δvB(π) + (1− δ)(v −M).

For δ = 1 this expression is strictly less than 1
2
(v−M) + 1

2
δvB(π), as (v−M) > δvB(π).

Hence for sufficiently high values of δ this will also be true. Also if a buyer deviates and

makes an offer in the range (M, p
′
) then it will be rejected by SM . The continuation payoff

of the buyer will then be δvB(π) <
1
2
(v −M) + 1

2
δvB(π). Hence we show that neither buyer

has any incentive to deviate.
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We conclude this section by arguing that it is not possible to establish this equilibrium

with private offers. This is because the equilibrium presented in this section depends crucially

on “overbidding” by one of the buyers to SM being detected by the other buyer and seller,

who then condition their future play on this deviation. But with private offers, this deviation

is not detectable, so the switch to the “punishment phase” is not possible.

5.2 Private offers

In this subsection, we consider a variant of the extensive form of the four-player incomplete

information game by in which offers are private to the recipient and the proposer. This

means in each period a seller observes only the offer(s) she gets and a buyer does not know

what offers are made by the other buyer or received by the sellers.

The equilibrium notion here is that of a public perfect Bayesian equilibrium (PPBE).

That is, in equilibrium strategies can condition only on the public history, (which is the set

of players remaining in a particular period) and the public belief. Hence, the equilibrium

characterised for the 4 -player incomplete information game with public offers is a PPBE of

the game with private targeted offers, with off-path behaviour as described in Appendix(C).

In case of public targeted offers, while proving that the stationary equilibrium outcome

is unique, we did not use the fact that each seller while responding observes the other seller’s

offer.

Any stationary equilibrium of the public targeted offers game is a particular public per-

fect Bayesian equilibrium of the game with private targeted offers. We now argue that no

non-stationary equilibrium with public offers can be established as an equilibrium with pri-

vate offers. Any non-stationary equilibrium depends on the expected future changes due

to publicly observed deviations. With private offers, the only deviation which is observed,

results in either some subset of players leaving or all players remaining. In the first case, the

continuation game will be a 2 player game. These continuation games have unique equilibria.

This implies that in any non-stationary equilibrium, there has to be a possible off-path play

where all four players remain. However, in that case, the player who deviated needs to be

detected for proper specification of continuation play after a deviation. This is not possible

with private offers. Hence, the asymptotic outcome implied by the described PPBE of the

private targeted offers model is the unique asymptotic PPBE outcome.
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6 Conclusion

In the model we described above we have shown that the unique stationary PBE outcome has

the property that , as δ → 1, the prices in both transactions go to the highest seller value H,

with the buyers making offers. If one interprets the alternative possibilities on the opposite

side of the market as outside options, this result restores the Coase conjecture for bilateral

bargaining with one-sided private information in the presence of outside options. With

private offers, the uniqueness result is for public perfect Bayes’ equilibrium, since stationarity

does not have any bite in this context. We then construct a stationary equilibrium to show

existence.

We have shown that there could be non-stationary equilibria in this model and have also

considered extensions to a continuum of seller types. The continuum of types does not affect

the result.

In our future research we intend to address the issue of having two privately informed

sellers and to extend this model to more agents on both sides of the market.
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Appendix

A Off-path behavior of the 2 player game with incom-

plete information

We recapitulate here the off-path beliefs that sustain the equilibrium we have discussed

for the two-player game. Suppose, for a given δ and π, the equilibrium offer is δtH(i.e

π ∈ [dt, dt+1) ) .We need to consider the following off-path contingencies.

(a) The buyer offers po to the seller such that po < δtH: If p0 < δt+1H then both the

L-type and H-type seller reject this offer with probability 1. If po ∈ [δt+1H, δtH) then the

L-type seller rejects this with a probability, which, through Bayes’ rule, implies that the

updated belief is dt. Let this probability be β
′′
(p). Hence the acceptance probability of this

offer is a
′′
(p) = πβ

′′
(p). The H-type seller always rejects this offer. Since po ∈ [δt+1H, δtH),

there exists a k ∈ (0, 1] such that po = kδt+1H+(1−k)δtH. Next period (if the seller rejects

now) the buyer offers δtH with probability k and δt−1H with probability (1 − k). This is

optimal from the point of view of the buyer because at π = dt, the buyer is indifferent

between offering δtH and δt−1H. Also the expected continuation payoff to the L-type seller

from rejection is equal to δ(kδtH + (1− k)δt−1H) = po. Thus the L-type seller is indifferent

between accepting and rejecting the offer of po.
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The way the cutoffs dt’s are derived ensures that the buyer has no incentive to deviate

and offer something less than δtH.

(b) Next, consider the case when the buyer offers po to the seller such that po > δtH.

If po ∈ (δtH, δt−1H], the L-type seller rejects this offer with a probability that takes the

updated belief to dt−1. Since po ∈ (δtH, δt−1H], there exists a k ∈ (0, 1], such that po =

kδt−1H + (1 − k)δtH. If the seller rejects then next period the buyer offers δt−2H with

probability k and δt−1H with probability 1 − k. This is optimal from the buyer’s point of

view since at π = dt−1, the buyer is indifferent between offering δt−1H and δt−2H. Since the

expected payoff to the L-type seller from rejection is δ(kδt−2H + (1 − k)δt−1H) = po, he is

indifferent between accepting and rejecting an offer of po. As po is strictly greater than δtH

and the acceptance probability is the same as that of the equilibrium offer, the buyer has no

incentive to deviate and offer po to the seller where po ∈ (δtH, δt−1H].

If po ∈ (δτ , δτ−1] (for τ ≤ t − 1 ) then the L-type seller rejects this with a probability

which through Bayes’ rule implies that the updated belief is dτ−1. If the seller rejects then

next period the buyer randomises between offering δτ−1H and δτ−2H such that the expected

continuation payoff to the L-type seller from rejection is po. It can be checked that the buyer

has no incentive to deviate and offer po where po ∈ (δτ , δτ−1] (τ ≤ t− 1 ).

B Off-path behavior of the 4 player game with incom-

plete information(public offers)

Suppose B2 adheres to his equilibrium strategy. Then the off-path behavior of B1 and that

of L-type SI , while B1 makes an offer greater than δtH to SI , are the same as in the 2-player

game with incomplete information. If B1’s offer to SI is less than δtH then the off-path

behavior of the L-type SI is described in the following manner. If B2’s offer to SM is in the

range [pl(π), p̄(π)], then the L-type SI behaves in the same way as in the 2-player game. If

B2 offers p
′

l(π) to SM then the L-type SI accepts the offer with the equilibrium probability

so that rejection takes the posterior to dt−1. Next period, B1 randomises between dt−1 and

dt−2 so that the L-type SI is indifferent between accepting or rejecting the offer now. For

high values of δ, B1 has no incentive to deviate.

Next, suppose B2 makes an unacceptable offer to SM , (which is observable to SI) and

B1 makes an equilibrium offer to SI . The L-type SI rejects this offer with a probability that

takes the updated belief to dt−1. If SI rejects this equilibrium offer and next period both the

buyers make offers to SM , then two periods from now, the remaining buyer offers δt−2H (the
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buyer is indifferent between offering δt−1H and δt−2H at π = dt−1) to SI . Thus the expected

continuation payoff to SI from rejection is δ(q(dt−1)δ
t−1H + δ(1 − q(dt−1))δ

t−2H) = δtH.

This implies that the L-type SI is indifferent between accepting and rejecting an offer of δtH

if he observes SM to get an unacceptable offer.

Now consider the case when B2 deviates and makes an offer to SI . It is assumed that if

SI gets two offers then she disregards the lower offer.

Suppose B1 makes an equilibrium offer to SI and B2 deviates and offers something less

than δtH to SI . SI ’s probability of accepting the equilibrium offer (which is the higher offer

in this case) remains the same. If SI rejects the higher offer (which in this case is the offer

of δtH from B1 ) and next period both the buyers make offers to SM , then two periods from

now, the remaining buyer offers δt−2H to SI .

If B2 deviates and offers po ∈ (δtH, δt−1H] to SI , then SI rejects this with a probability

that takes the updated belief to dt−2. If SI rejects this offer then next period if B1 offers to

SI , he offers δt−2H. If both B1 and B2 make offers to SM then two periods from now the

remaining buyer randomises between offering δt−2H and δt−3H to SI (conditional on SI being

present). Randomisations are done in a manner to ensure that the expected continuation

payoff to SI from rejection is po. It is easy to check that for high values of δ, this can

always be done. Lastly, if B2 deviates and offers to SI and B1 offers to SM (according to his

equilibrium strategy), then the off-path specifications are the same as in the 2-player game

with incomplete information.

We will now show that B2 has no incentive to deviate. Suppose he makes an unacceptable

offer to SM . His expected discounted payoff from deviation is given by,

D = q(π)[δ{a(π)(v −M) + (1− a(π))vB(dt−1)}] + (1− q(π))δvB(π) (9)

From (4) we know that,

p
′

l(π) < M + δ(1− a(π))[p̄(dt−1)−M ]

as Edt−1 < p̄(dt−1). Hence we have,

p
′

l(π) < M + δ(1− a(π))[(v −M)− (v − p̄(dt−1))]

Rearranging the terms above we get,

(v − p
′

l(π)) > δ{a(π)(v −M) + (1− a(π))vB(dt−1)}+ (1− δ)(v −M) (10)
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By comparing (9) and (10) we have,

q(π)(v − p
′

l(π)) + (1− q(π))δvB(π) > D

The L.H.S of the above relation is B2’s equilibrium payoff, as he puts a mass point at p
′

l(π).

Hence he has no incentive to make an unacceptable offer to SM .

Next, suppose B2 deviates and makes an offer of po to SI such that po ∈ (δtH, δt−1H].

B2’s payoff from deviation is:

ΓH = q(π)[(v−po)a
′
(π)+(1−a

′
(π))δvB(dt−2)]+(1−q(π))[(v−po)a(π)+(1−a(π))δvB(dt−1)]

where a
′
(π) is the probability with which B2’s offer is accepted by SI in the event when both

B1 and B2 make offers to SI and B2’s offer is in the range (δtH, δt−1H]. From our above

specification it is clear that a
′
(π) > a(π), where a(π) is the acceptance probability of an

equilibrium offer to SI . This is also very intuitive. In the contingency when B1 makes an

equilibrium offer to SM and B2’s out of the equilibrium offer to SI is in the range (δtH, δt−1H],

the acceptance probability is equal to a(π), the equilibrium acceptance probability. In this

case if the L-type SI rejects an offer then next period he will get an offer with probability 1.

However if both B1 and B2 make offers to SI and B2’s offer is in the range (δtH, δt−1H] then

the L-type SI accepts this offer with a higher probability. This is because, on rejection, there

is a positive probability that SI might not get an offer in the next period. This explains why

a
′
(π) > a(π).

Since po > p
′

l(π)
21 and p̄(dt−2) > p

′

l(π)
22, we have

v − p
′

l(π) > (v − po)a
′
(π) + (1− a

′
(π))δvB(dt−2) (11)

Also, since po > δtH, we have

(v − po)a(π) + (1− a(π))δvB(dt−1) < vB(π)

The expression [(v−po)a(π)+(1−a(π))δvB(dt−1)−δvB(π)] is strictly negative for δ = 1. From

continuity, we can say that for sufficiently high values of δ, (v−po)a(π)+(1−a(π))δvB(dt−1) <

δvB(π). This implies that,

(v − p
′

l(π))q(π) + (1− q(π))δvB(π) > ΓH

21For sufficiently high values of δ this will always be the case.
22Since p̄(dt−2) > p̄(π) > p

′

l(π).
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The L.H.S of the above inequality is the equilibrium payoff of B2. Similarly if B2 deviates

and make an offer to SI such that his offer p0 is in the range [δt+1H, δtH), the payoff from

deviation is

ΓL = q(π)[δ{a(π)(v −M) + (1− a(π))vB(dt−1)}]

+(1− q(π))[(v − p0)a
′′
(π) + (1− a

′′
(π))δvB(dt)]

¿From the 2-player game we know that [(v−p0)a
′′
(π)+(1−a

′′
(π))δvB(dt)] < vB(π). Also

from the previous analysis we can posit that (v−p
′

l(π)) > δ{a(π)(v−M)+(1−a(π))vB(dt−1)}.
Thus for sufficiently high values of δ, (v − p

′

l(π))q(π) + (1− q(π))δvB(π) > ΓL.

Hence B2 has no incentive to deviate and make an offer to SI .

C Off-path behavior with private offers

The off-path behavior described in the preceding appendix is not applicable to the case of

private offers. This is because it requires the offers made by both the buyers to be publicly

observable. The off-path behavior of the players in the case of private offers is described as

follows.

Specifically we need to describe the behavior of the players in the following three contin-

gencies.

(i) B2 makes an unacceptable offer to SM .

(ii) B2 makes an offer of po to SI such that po < δtH.

(iii) B2 makes an offer of po to SI such that po > δtH.

We denote the above three contingencies by E1, E2 and E3 respectively. We now construct

a particular belief system that sustains the equilibrium described in the text.

Suppose B1 attaches probabilities λ,λ
2 and λ3 (0 < λ < 1 ) to E1, E2 and E3 respectively.

Thus he thinks that B2 is going to stick to his equilibrium behavior with probability [1 −
(λ+ λ2 + λ3)].

If E1 or E2 occurs and B1 makes an equilibrium offer to SI , then SI ’s probability of

accepting the equilibrium offer remains the same and two periods from now (conditional on

the fact that the game continues until then), if B2 is the remaining buyer he offers δt−2H

to SI . If E3 occurs and all players are observed to be present, then next period B2 offers

p̄(dt−1) to SM . In any off-path contingency, if B1 is the last buyer remaining (two periods

from now) then he offers δt−2H to SI .
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The L-type SI accepts an offer higher than δtH with probability 1 if she gets two offers.

If she gets only one offer then the probability of her acceptance of out-of-equilibrium offers

is the same as in the two-player game with incomplete information.

We will now argue that the off-path behavior constitutes a sequentially optimal response

by the players to the limiting beliefs as λ → 0.

Suppose B1 makes an equilibrium offer to SI and it gets rejected. Although offers are

private, each player can observe the number of players remaining. Thus, next period, if

B1 finds that all four players are present he infers that this is due to an out-of-equilibrium

play by B2. Using Bayes’ rule he attaches the following probabilities to E1, E2 and E3

respectively.

1

1 + λ+ λ2
to E1

λ

1 + λ+ λ2
to E2

λ2

1 + λ+ λ2
to E3

As λ → 0, the probability attached to E1 goes to 1. Thus B1 believes that his equilibrium

offer of δtH to SI was rejected and the updated belief is dt−1. In the case of E1 or E2 the

beliefs of B1 and B2 coincide. However, in the case of E3 they differ. Suppose E3 occurs and

B1’s equilibrium offer to SI gets rejected. Then next period all four players will be present

and given L-type SI ’s behavior, the belief of B2 will be π = 0 and that of B1 will be π =

dt−1. In that contingency it is an optimal response of B2 to offer p̄(dt−1) to SM since he

knows that B1 is playing his equilibrium strategy with the belief dt−1.

Next we will argue that the L-type SI finds it optimal to accept an offer higher than δtH

with probability 1, if she gets two offers. This is because in the event when she gets two

offers she knows that rejection will lead the buyer B1 to play according to the belief dt−1 and,

two periods from now, the remaining buyer will offer δt−2H to SI . Thus her continuation

payoff from rejection is

δ{δt−1Hq(dt−1) + δ(1− q(dt−1))δ
t−2H} = δ{δt−1H} = δtH

Hence she finds it optimal to accept an offer higher than δtH with probability 1.

We need to check that B2 has no incentive to deviate and make an offer of po to SI such

that po > δtH.

Suppose B2 deviates and makes an offer of po to SI such that po > δtH. With probability

q(π), SI will get two offers and B′
2s will be accepted with probability π. With probability
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(1− q(π)), SI will get only one offer. B2 then gets a payoff of

(v − po)q(π)π + (1− q(π))[(v − po)a(π) + (1− a(π))δvB(dt−1)]

As shown in the previous appendix, for high values of δ we have (v − po)a(π) + (1 −
a(π))δvB(dt−1) < δvB(π). Also for high values of δ, po > p

′

l(π). Thus
23,

vB(π) = (v − p
′

l(π))q(π) + (1− q(π))δvB(π)

> (v − po)q(π)π + (1− q(π))[(v − po)a(π) + (1− a(π))δvB(dt−1)]

Hence B2 has no incentive to deviate and make an offer of po to SI .

Lastly, to show that B2 has no incentive to deviate and make an unacceptable offer to

SM or offer p0 to SI such that p0 < δtH we refer to the analysis in the previous appendix.

D Off-path behavior for the 2-player game where the

informed seller’s valuation is drawn from a contin-

uous distribution

Suppose the buyer makes an offer of p0 such that p0 > pt. We will show that for any

p0 ∈ (pt, pt−1), the buyer will have no incentive to offer p0. By definition, we have,

pt−1 − st−2 = δ(pt−2 − st−2) ⇒ pt−1 − st−1 > δ(pt−2 − st−1)

since st−1 < st−2. Also,

pt − st−1 = δ(pt−1 − st−1) ⇒ pt − st−1 < δ(pt−2 − st−1)

since pt−2 > pt−1. This implies that there exists a γ ∈ (0, 1) such that

γpt−1 + (1− γ)pt − st−1 = δ(pt−2 − st−1)

Any p0 ∈ (pt, pt−1) can be written as p0 = ηpt−1 + (1− η)pt, where η ∈ (0, 1).

If η < γ then rejection takes the posterior to st−1. The buyer following a rejection

randomises between pt−1 and pt−2 such that the seller with valuation st−1 is indifferent

between accepting the offer of p0 or rejecting it. Since η < γ, such a randomisation is always

23This is because B2 puts a mass point at p
′

l(π)
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possible. Also for the buyer, he is offering a higher price and it is getting accepted with the

equilibrium probability.

If η > γ then rejection takes the posterior to s
′ ∈ (st−1, st−2) and the buyer next period

offers pt−2. Here s
′
is such that the seller with such a valuation is indifferent between

accepting the offer of p0 or rejecting it. Since η > γ,

p0 − st−1 > δ(pt−2 − st−1)

Also from definition, one can show that

p0 − st−2 < δ(pt−2 − st−1)

This shows that such a s
′
exists.

Now, suppose the buyer offers some price p0 such that p0 < pt. We will show that for

any p0 ∈ (pt+1, pt), the buyer will have no incentive to deviate. For any p0 ∈ (pt+1, pt), there

exists a α ∈ (0, 1) such that p0 = αpt + (1− α)pt+1. By definition, we have

pt+1 − st = δ[pt − st]

pt − st > δ[pt − st]

Hence

p0 − st > δ[pt − st]

Again by definition,

pt+1 − st = δ[pt − st] < δ[pt−1 − st]

pt − st−1 = δ[pt−1 − st−1] ⇒ pt − st > δ[pt−1 − st]

Hence there exists a γ ∈ (0, 1) such that

γpt + (1− γ)pt+1 − st = δ[pt−1 − st]

Thus if α < γ, then rejection takes the posterior to st. Next period the buyer randomises

between offering pt and pt−1.

If α > γ, then rejection takes the posterior to some s
′ ∈ (st, st−1) such that a seller with

valuation s
′
is indifferent between accepting the offer of p0 or to reject it. As before it can

be shown that such a s
′
exists.
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E Out-of-equilibrium behavior for the 4-player game

where the informed seller’s valuation is drawn from

a continuous support (public offers)

We only describe the following two off-path deviations. Others are analogous to the ones with

the case where the informed seller’s valuation is drawn from a distribution with two-point

support.

First, suppose B2 makes an unacceptable offer to SM (i.e less than p
′

l(s)) and B1 makes

an equilibrium offer to SI . Then rejection of the equilibrium offer by SI still takes the

posterior to st−1. However, next period, if B1 offers to SI , then he randomises between

offering pt−1 and pt−2. If next period, both the buyers offer to SM , then two periods from

now, the remaining buyer randomises between offering pt−1 and pt−2 to SI . Note that when

the posterior is st−1, the buyer is indifferent between offering pt−1 and pt−2.

The payoff to the seller with valuation st−1 from accepting an equilibrium offer now is

(pt − st−1). Hence randomisations by the buyers in the subsequent periods should ensure

that the continuation payoff to the seller with valuation st−1 from rejecting the equilibrium

offer is also (pt − st−1). We will now show that for high values of δ, such a randomisation is

always possible.

Γc
l (the minimum continuation payoff to the seller with valuation st−1; i.e an offer of pt−1

in the next period and two periods from now.) is given as,

Γc
l = δ[q(st−1)(pt−1 − st−1) + (1− q(st−1))δ(pt−1 − st−1)]

= δ[pt−1 − st−1][q(.) + (1− q(.))δ] = (pt − st−1)[q(.) + (1− q(.))δ] < (pt − st−1)

(since by definition, pt − st−1) = δ[pt−1 − st−1]. This is true for all δ < 1)

Γc
h (the maximum continuation payoff to the seller with valuation st−1; i.e an offer of pt−2

in the next period and two periods from now) is given as,

Γc
h = δ[q(st−1)(pt−2 − st−1) + (1− q(st−1))δ(pt−2 − st−1)]
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= δ[(pt−2 − st−1)(q(st−1) + (1− q(st−1))δ)]

> δ[(pt−1 − st−1)(q(st−1) + (1− q(st−1))δ)]

(since pt−2 > pt−1 )

= (pt − st−1)(q(st−1) + (1− q(st−1))δ)

For δ = 1 we have Γc
h ≥ (pt − st−1) (since q(.) → 0, as δ → 1). This is because the

inequality is strictly maintained when δ < 1, and is not reversed when δ → 1 (as pt−2 > pt−1

by definition) . Then by continuity we can say that for high values of δ, we will have

Γc
h > (pt − st−1) . Also, we have Γc

l < (pt − st−1). Hence on the equilibrium offer being

rejected by the informed seller, offers to SI can be made by randomising between pt−1 and

pt−2 in a manner, such that the seller with valuation st−1 is indifferent between accepting

and rejecting the offer now. In the same way as done in the case of discrete valuations of

the informed seller, one can show that the buyer B2 has no incentive to deviate and make

an unacceptable offer to SM .

Next, suppose B1 makes an equilibrium offer to SI and B2 deviates and makes an offer

of p0 to SI , such that p0 < pt. Then the informed seller disregards the lower offer. Rejection

takes the posterior to st−1. Thereafter buyers’ behavior in making offers to SI is exactly the

same as described above.

Finally, suppose B2 deviates and makes an offer of p0 > pt to SI and B1 makes an

equilibrium offer to SI . Then rejection takes the posterior to st−1. We will show that for

high values of δ, the buyer can always randomise between offering pt−1 and pt−2 in the next

and subsequent periods (if there is no offer to SI in the next period), such that the seller

with valuation st−1 is indifferent between accepting and rejecting the offer.

Any offer p0 ∈ (pt, pt−1) is a convex combination of pt and pt−1. It is already shown above

that the minimum continuation payoff to SI with valuation st−1, Γc
l < pt − st−1. Also,

Γc
h = δ[q(st−1)(pt−2 − st−1) + (1− q(st−1))δ(pt−2 − st−1)]

= δ[(pt−2 − st−1)(q(st−1) + (1− q(st−1))δ)]

> δ[(pt−1 − st−1)(q(st−1) + (1− q(st−1))δ)]

Since the inequality is strictly maintained for δ < 1 and not reversed when δ → 1, we

have

Γc
h ≥ pt−1 − st−1

for δ = 1. Then by continuity we can posit that for high values of δ, we will have Γc
h >

42



pt−1 − st−1.

Hence the suggested randomisation is possible.

F Out-of-equilibrium behavior for the 4-player game

where the informed seller’s valuation is drawn from

a continuous support (private offers)

Specifically we need to describe the behavior of the players in the following three contingen-

cies:

(i) B2 makes an unacceptable offer to SM .

(ii) B2 makes an offer of po to SI such that po < pt.

(iii) B2 makes an offer of po to SI such that po > pt.

We denote the above three contingencies by E1, E2 and E3 respectively. We now construct

a particular belief system that sustains the equilibrium described in the text.

Suppose B1 attaches probabilitites λ, λ
2 and λ3 (0 < λ < 1) to E1, E2 and E3 respectively.

Thus he thinks that B2 is going to stick to his equilibrium behavior with probability (1 −
(λ+ λ2 + λ3)).

If E1 or E2 occurs and B1 makes an equilibrium offer to SI , then SI ’s probability of

accepting the equilibrium offer remains the same. On observing that all four players are

present, the common posterior of the buyers will be st−1. In the subsequent periods when

offers are made to SI , randomisations between pt−1 and pt−2 are done in a manner to ensure

that the continuation payoff to the informed seller with valuation st−1 is (pt − st−1) . If E3

occurs and all players are observed to be present, then next period B2 offers p̄(st−1) to SM .

If the informed seller gets two offers, she accepts an offer p0 > pt with probability 1 as

long as her valuation is less than s
′
. Here s

′
is such that

p0 − s
′
= pt − st−1

If she gets only one offer then the probability of her acceptance of out-of-equilibrium offers

is the same as in the two-player game with incomplete information.

We will now argue that the off-path behavior constitutes a sequentially optimal response

by the players to the limiting beliefs as λ → 0.

Suppose B1 makes an equilibrium offer to SI and it gets rejected. Although offers are
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private, each player can observe the number of players remaining. Thus, next period, if B1

finds that all four players are present, he infers that this is due to an out-of-equilibrium

play by B2. Using Bayes’ rule he attaches the following probabilities to E1, E2 and E3

respectively.
1

1 + λ+ λ2
to E1

λ

1 + λ+ λ2
to E2

λ2

1 + λ+ λ2
to E3

As λ → 0, the probability attached to E1 goes to 1. Thus B1 believes that his equilibrium

offer of pt to SI was rejected and the updated belief is st−1. In the case of E1 or E2 the beliefs

of B1 and B2 coincide. However, in the case of E3, they differ. Suppose E3 occurs and B1’s

equilibrium offer to SI gets rejected. Then next period all four players will be present and

given SI ’s behavior, the belief of B2 will be s
′
> st−1 such that

p0 − s
′
= pt − st−1

where p0 > pt is the out of equilibrium offer made by B2 to SI (This in turn implies that the

behavior of the informed seller in the contingency E3 is optimal).

This is because the belief of B1 is st−1 and B2, from the subsequent period onwards,

plays according to B1’s belief. In the subsequent periods while offers are being made to SI ,

randomisations between pt−1 and pt−2 are done in a manner to ensure that the continuation

payoff to SI is pt − st−1. As before it is easy to observe that B2 finds it optimal to play

according to B1’s belief, since B2’s belief (s
′
) is greater than that of B1 (st−1) .

In the same way as done in the case of discrete valuations of the informed seller, we can

show that B2 will not deviate.

G Proof of lemma (21)

Proof. We only need to show that there exists a δ∗t ≥ δ̄ such that for all δ > δ∗t and for all

s ∈ (st+1, st] ,there exists a pl(s) ∈ (p
′

l(s), p̄(s)) with

pl(π) = (1− δ)M + δEs(p)

From now on we will write st instead of st(δ). For each δ ∈ (δ
′
, 1) we can construct d(δ)

and the equilibrium strategies as above (assuming existence). Construct the function G(x)

44



as

G(x) = x− [δEx
s (p) + (1− δ)M ]

From [7] we know that the functionG(.) is monotonically increasing in x. Since Ex
π(p) < p̄(π),

lim
x→p̄(π)

G(x) > 0

Next, we have

G(p
′

l(π)) = p
′

l(s)− [δE
p
′
l(s)

s (p) + (1− δ)M ]

By definition E
p
′
l(s)

π (p) > p
′

l(s). So for δ = 1, G(p
′

l(π))) < 0. Since G(.) is a continuous

function, there exists a δ∗t ≥ δ̄ such that for all δ > δ∗t , G(p
′

l(π))) < 0. By invoking the

Intermediate Value Theorem we can say that there is a unique x∗ ∈ (p
′

l(π), p̄(π)) such that

G(x∗) = 0. This x∗ is our required pl(π).

This concludes the proof.

H Informed seller’s reservation value is continuously

distributed in (L,H ]

Suppose the informed seller’s valuation is continuously distributed on (L,H] according to

some cdf G(s). As before, we first consider the two player game with a buyer and a seller,

where the seller is informed.

H.1 Two-player Game

There is one buyer, whose valuation is commonly known to be v.

There is one seller, whose valuation is private information to her. Her valuation is

distributed according to a continuous distribution function G(.), over the interval (L,H]

with L < H < v.

Let g(.) be the density function which is assumed to be bounded:

0 < g ≤ g(s) ≤ ḡ

Players discount the future using a common discount factor δ ∈ (0, 1).

We now state the equilibrium of the infinite horizon bargaining game where the buyer

makes offers in each period. The seller either accepts or rejects an offer. Rejection takes the

game to the next period, when the buyer again makes an offer.

The result re-stated below (for completeness) is from [15] .
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One can show that at any instant, the buyer’s posterior distribution about the seller’s

valuation can be characterised by a unique number se, which is the lowest possible valuation

of the seller. With a slight abuse of terminology, we will call se the buyer’s posterior.

The Equilibrium: Given a δ ∈ (0, 1), we can obtain thresholds st’s, such that L < st <

H and

st < st−1 < .... < s2 < s1

If at a time point t, the posterior st ∈ (st+1, st], then the buyer offers pt. A seller with

valuation less than st−1 accepts the offer. Rejection takes the posterior to st−1.

The pt’s are such that the seller with a valuation st−1 is indifferent between accepting

the offer now or waiting until the next period. The off-path behavior of players is outlined

in appendix (D).

It can be shown that as δ → 1, for all t, pt → H. Also the maximum number of periods

for which the game would last is bounded above by N∗.

H.2 Four-player game

We now analyse the four-player game. There are two buyers, each with a valuation v. There

are two sellers. One of them has a valuation which is commonly known to be M . The

other seller’s valuation is private information to her. It is continuously distributed in (L,H],

according to some cdf G(.) as discussed above.

Analogous to the discrete types case, we first show that if there exists a stationary

equilibrium in the four-player game, then the asymptotic outcome for all such equilibria

is unique. That is, as δ → 1, price offers in all transactions go to H. First, we prove

the following proposition that establishes the result, conditional on a particular kind of

equilibrium being ruled out. Later, we prove that this particular kind of equilibrium never

exists.

Proposition 3 Consider the set of stationary equilibria (possibly empty) of the four-player

game such that any equilibrium belonging to this set has the property that both buyers do not

make offers only to the informed seller (SI) on the equilibrium path. As the discount factor

δ → 1, all price offers in any equilibrium belonging to this set converge to H.

Proof. We prove this proposition in steps, through a series of lemmas. First, we show that

for any equilibrium belonging to the set of equilibria considered, the following lemma holds.

Lemma 12 For any s, it is never possible to have a stationary equilibrium in the set of

equilibria considered such that both buyers offer only to SM on the equilibrium path.
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Proof. Suppose it is the case that both buyers offer only to SM . Since this is a stationary

equilibrium, both buyers should have a distribution of offers to SM with a common support

[p(s), p̄(s)]. The payoff to each buyer should then be (v − p̄(s)) = v4(s)(say). Let vB(s) be

the payoff obtained by a buyer when his offer to SM gets rejected.

Consider any p ∈ [p(s), p̄(s)] and one of the buyers (say B1). If the distributions of the

offers are given by Fi for buyer i, then we have

(v − p)F2(p) + (1− F2(p))δvB(s) = v − p̄(s)

Since in equilibrium, the above needs to be true for any p ∈ [p(s), p̄(s)], we must have

v − p̄(s) > δvB(s). The above equality gives us

F2(p) =
(v − p̄(s))− δvB(s)

(v − p)− δvB(s)

Since v − p̄(s) > δvB(s), for p ∈ [p(s), p̄(s)), we have v − p > v − p̄(s) > δvB(s). This

would imply

F2(p(s)) > 0

Similarly, we can show that

F1(p(s)) > 0

In a stationary equilibrium, it is not possible for both the buyers to put mass points at

the lower bound of the support. Hence, SM cannot get two offers with probability 1. This

concludes the proof of the lemma.

For any equilibrium belonging to the set of equilibria we are considering, we know that SM

must get at least one offer with positive probability. The above lemma implies that SI also

gets at least one offer with a positive probability. We will now argue that for any equilibrium

in the set of equilibria considered, SM always accepts an equilibrium offer immediately. This

is irrespective of whether SM gets one offer or two offers.

To show this formally, consider such an equilibrium. We first define the following. Given

a s, let pi(s) be the minimum acceptable price to the seller SM in the event she gets i

(i = 1, 2) offer(s) in the considered equilibrium. We have

p1(s)−M = (1− (α(s))δ[Ep(s̃)−M ]

Ep(s̃) is the price corresponding to the expected equilibrium payoff to the seller SM in the

event she rejects the offer and the informed seller does not accept the offer. It is evident

that when the seller SM is getting one offer, the informed seller is also getting an offer. Here
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α(s) is the probability with which the informed seller accepts the offer and s̃ is the updated

posterior.

Similarly, we have

p2(s)−M = δ[Ep(s)−M ]

where Ep(s) is the price corresponding to the expected equilibrium payoff to SM in the event

she rejects both offers. Similar to the discrete types case, we can argue that Ep(s) > M .

The following lemma has the consequence that SM always accepts an equilibrium offer (or

highest of the equilibrium offers) immediately.

Lemma 13 For any s < H, if we restrict ourselves to the set of equilibria considered, then

in any arbitrary equilibrium, it is never possible for a buyer to make an offer to SM that is

strictly less than min{p1(s), p2(s)}.

Proof. Suppose the conclusion of the lemma does not hold, so there is such an equilibrium.

Let the payoff to the buyers from this candidate equilibrium of the four-player game be v4(s).

As in the discrete types case, we argue that v4(s) < v − p2(s). Let vB(s) be the payoff the

buyer gets by making offers to SI in a two-player game.

Consider the buyer who makes the lowest offer to SM . We label this buyer as B1 and the

lowest offer as p(s),where p(s) < min{p1(s), p2(s)}. Let q(s) be the probability with which

the other buyer makes an offer to the seller SI . Let γ(s) be the probability with which the

other buyer, conditional on making offers to the seller SM , makes an offer which is less than

p2(π). Finally, α(s) is the probability with which the informed seller accepts an offer if the

other buyer makes an offer to her. Since B1’s offer of p(s) to SM is always rejected, the

payoff to B1 from making such an offer is

{q(s)δ{α(s)(v −M) + (1− α(s))(v − Eb
p(s̃))}+ (1− q(s))δ{γ(s)v4(s) + (1− γ(s))vB(s)}

where Eb
p(s̃) is such that (v − Eb

p(s̃)) is the expected equilibrium payoff to the buyer if

the updated belief is s̃. We first argue that (v − Eb
p(s̃)) is less than or equal to (v − Ep(s̃)).

This is because since (Ep(s̃)−M) is the expected equilibrium payoff to the seller SM when

the belief is s̃, there is at least one price offer by the buyer that is greater than or equal to

Ep(s̃). Hence, we have

δ{α(s)(v −M) + (1− α(s))(v − Eb
p(s̃))} ≤ δ{α(s)(v −M) + (1− α(s))(v − Ep(s̃))}

⇒ (v − p1(s))− δ{α(s)(v −M) + (1− α(s))(v − Eb
p(s̃))}
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≥ (v − p1(s))− δ{α(s)(v −M) + (1− α(s))(v − Ep(s̃))}

Since (v − p1(s)) − δ{α(s)(v −M) + (1 − α(s))(v − Ep(s̃))} = (1 − δ)(v −M) > 0, we

have

(v − p1(s))− δ{α(π)(v −M) + (1− α(s))(v − Eb
p(s̃))} > 0

There are two possibilities. Either p1(s) < p2(s) or p2(s) < p1(s). If p2(s) > p1(s), then

the buyer can profitably deviate by making an offer of p1(s). The payoff from making such

an offer is

q(s)(v − p1(s)) + (1− q(s)){γ(s)δv4(s) + (1− γ(s))δvB(s)}

Since (v − p1(s)) − δ{α(s)(v − M) + (1 − α(s))(v − Eb
p(s̃))} > 0, we can infer that this

constitutes a profitable deviation by the buyer.

Next, consider the case when p2(s) < p1(s). In this situation, the buyer can profitably

deviate by making an offer of p2(s). The payoff from making such an offer is

{q(s)δ{α(s)(v−M)+ (1−α(s))(v−Eb
p(s̃))}+(1− q(s)){γ(s)(v− p2(s))+ (1−γ(s))δvB(s)}

Since v4(s) < (v − p2(s)), this constitutes a profitable deviation by the buyer.

This concludes the proof of the lemma.

There are two immediate conclusions from the above lemma. First, if p2(s) < p1(s), then

it can be shown that if δ is high enough, then in equilibrium, no buyer should offer anything

less than p1(s). To show this, suppose at least one of the buyers makes an offer which is

less than p1(s) and consider the buyer who makes the lowest offer to SM . Let γ1(s) be the

probability with which the other buyer, conditional on making offers to SM , makes an offer

which is less than p1(s). The payoff to the buyer by making the lowest offer to SM is

{q(s)δ{α(s)(v −M) + (1− α(s))(v − Eb
p(s̃))}+ (1− q(s))δ{vB(s)}

However, if he makes an offer of p1(s) then the payoff is

{q(s)(v − p1(s)) + (1− q(s)){γ1(s)(v − p1(s)) + (1− γ1(s))δvB(s)}

We know that as δ → 1, vB(s) → v − H. Since p1(s) < H, this implies that for high δ,

γ1(s)(v− p1(s))+ (1− γ1(s))δvB(s) > δvB(s). Hence, for high δ, this constitutes a profitable

deviation by the buyer.

Secondly, if p1(s) < p2(s), then only one buyer can make an offer with positive probability

that is less than p2(s). This is because, any buyer who makes an offer to SM in the range

(p1(s), p2(s)) can get the offer accepted when the seller SM gets only one offer. In that case
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the offer can still get accepted if it is lowered and that would not alter the outcomes following

the rejection of the offer. Hence, the buyer can profitably deviate by making a lower offer.

Thus, in equilibrium if a buyer has to offer anything less than p2(s) to the seller SM , then it

has to be equal to p1(s). However, in equilibrium both buyers cannot put a mass point at

p1(s). This shows that only one buyer can make an offer to SM which is strictly less than

p2(s).

Hence, we have argued that all offers to SM are always greater than or equal to p1(s)

and in the event SM gets two offers, both offers are never below p2(s). This shows that SM

always accepts an equilibrium offer immediately.

We will now show that for any equilibrium in the set of equilibria considered, the informed

seller by rejecting equilibrium offers for a finite number of periods can take the posterior to

H. This is shown in the following lemma.

Lemma 14 Suppose we restrict ourselves to the set of equilibria considered. Given a s and

δ, there exists a Ts(δ) > 0 such that, conditional on getting offers, the informed seller can

get an offer of H in Ts(δ) periods from now by rejecting all offers she gets in between. Ts(δ)

depends on the sequence of equilibrium offers and corresponding strategies of the responders

in the candidate equilibrium. Ts(δ) is uniformly bounded above as δ → 1.

Proof.

In any equilibrium, a positive mass of types of the informed seller should always accept.

If a particular type s accepts, then all types s
′
< s should also accept. Thus, rejection always

leads to an upward revision of the posterior. This proves the first part of the lemma.

We will show that given a posterior s, in any equilibrium, the mass of informed seller

accepting the lowest offer is always bounded below as δ → 1.

As argued in the discrete types case, we only need to consider the case where two buyers

offer to SI with positive probability. For a given s, let pl be the minimum offer which gets

accepted by a positive mass of types of SI . Like the discrete types case, we know that there

exists a possible outcome such that SI gets the offer of pl only. Since, SM always accepts

an equilibrium offer immediately, SI in such a situation knows that rejecting the offer will

lead to a two- player game. By invoking the finiteness property of the two-player game we

can infer that as δ → 1, the number of rejections required for the informed seller to get an

offer of H converges to some T̃ (0 < T̃ < ∞). Further, posteriors in each of the time periods

t = 1, .., T̃ − 1 also reaches a limit st. Let pt be the price offered in time period t > 0,

following a rejection from the informed seller in t− 1. Note that p0 = pl and pT̃ = H.

Suppose there exists an equilibrium of the four-player game such that pl is the initial

price offer and the number of rejections required for the informed seller to get H is not
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bounded above as δ → 1. This implies that we can find a δ′ < 1 such that for all δ > δ′, we

have sut < st for all t = 1, 2, ..., T̃ . sut is the updated posterior following a rejection in t− 1.

Let put be the offer (or highest of the offers) to the informed seller at time point t ≥ 1.

We will now show that for all t ≥ 1, put > pt.

Consider t = 1. We know that

pl − s1 = δ(p1 − s1) ⇒ δp1 = pl − (1− δ)s1

Similarly,

pl − su1 = δ(pu1 − su1) ⇒ δpu1 = pl − (1− δ)su1

Thus, we have pu1 − p1 = (1− δ)(s1 − su1) > 0 ⇒ pu1 > p1.

Consider t > 1. We will show that if put−1 > pt−1, then put > pt.

pt−1 − st = δ(pt − st) ⇒ δpt = pt−1 − (1− δ)st

Similarly,

pt−1 − sut = δ(put − sut ) ⇒ δput = put−1 − (1− δ)sut

Thus, we have put − pt = put−1 − pt−1 + (1− δ)(st − sut ) > 0. Hence for all t ≥ 1, put > pt.

This implies that pT̃ ≥ H. Hence, the price offer reaches H after finite number of

rejections. This is contradictory to our conjectured hypothesis. Thus, in any equilibrium,

the informed seller can get an offer of H after rejecting for finite number of times. This

concludes the proof of the lemma.

We will now show that in a stationary equilibrium, both buyers cannot make offers to

both sellers with positive probability.

Lemma 15 In any equilibrium belonging to the set of equilibria considered, if players are

patient enough then both buyers cannot make offers to both sellers with positive probability.

Proof. In equilibrium, any offer made to the informed seller should get accepted by a positive

mass of types of SI . Suppose there exists a stationary equilibrium of the four-player game

where both buyers offer to both sellers with a positive probability. Hence, in equilibrium, if

the informed seller gets offer(s), then she either gets two offers or one offer. Since SM always

accepts an offer in equilibrium immediately, SI knows that on rejecting an offer(s) she will

get another offer in at most two periods from now. Hence, from lemma (14) we infer that if

the informed seller gets one offer, then the type s-SI who accepts the offer now can expect to

get an offer of H in at most T1(s) > 0 time periods from now, by rejecting all offers she gets

in between. Similarly, if the informed seller gets two offers then the type s-SI who accepts an
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offer now by rejecting both offers can expect to get an offer of H in at most T2(s) > 0 time

periods from now by rejecting all offers she gets in between. As we have argued in lemma

(14), both T1(s) and T2(s) are bounded above as δ → 1. Thus, any offer p to the informed

seller in equilibrium should satisfy

p ≥ δT1(s)H + (1− δT1(s))s ≡ p1(δ)

and

p ≥ δT2(s)H + (1− δT2(s))s ≡ p2(δ)

It is clear from the above that as δ → 1, both p1(δ) → H and p2(δ) → H. Hence, if there

is a non-degenerate support of offers to SI in equilibrium, then the support should collapse

as δ → 1.

We will now argue that for δ high enough but δ < 1, the support in equilibrium cannot

have two or more points.

Suppose it is possible that the support of offers to SI has two or more points. This

implies that the upper bound and the lower bound of the support are different from each

other. Let p(s) and p̄(s) be the lower and upper bound of the support respectively.

Consider a buyer who is making an offer to SI . This buyer must be indifferent between

making an offer of p(s) and p̄(s). Let q(s) be the probability with which the other buyer

makes an offer to SI . Since in equilibrium SM always accepts an offer immediately, the payoff

from making an offer of p(s) to SI is

Πp(s) = (1− q(π))[αp(s)(v − p(s)) + (1− αp(s))δvB(s
′
)]

+q(s)Ep{[βp
sδ(v −M) + (1− βp

s )δv4(s
′′

p)]}

αp(s) is the probability of acceptance of the offer p(s) when SI gets the offer of p(s) only.

βp
s is the acceptance probability of the offer p when SI gets two offers. vB(.) and v4(.) are

the buyer’s payoffs from the two-player incomplete information game and the four player

incomplete information game respectively. For the second term of the right-hand side, we

have taken an expectation because when two offers are made, this buyer’s offer of p(s) to

SI never gets accepted and the payoff then depends on the offer made by the other buyer.

When SI gets only one offer and rejects an offer of p(s), then the updated posterior is s
′
; s

′′
p

denotes the updated posterior when SI rejects an offer of p ∈ (p(s), p̄(s)] and she gets two

offers.
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Similarly, the payoff from offering p̄(s) is

Πp̄(s) = (1− q(s))[αp̄(s)(v− p̄(s))+ (1−αp̄(s))δvB(s
′′′
)] + q(s)[β2s(v− p̄(s))+ (1− β2s)δv4(s

4)]

Here s
′′′
is the updated posterior when SI gets one offer and rejects an offer of p̄(s). When

SI gets two offers and rejects an offer of p̄(s), the updated posterior is denoted by s4. Note

that if at all SI accepts an offer, she always accepts the offer of p̄(s), if made. The quantity

αp̄(s) is the probability with which the offer of p̄(s) is accepted by SI when she gets one offer.

When SI gets two offers, then the offer of p̄(s) gets accepted with probability β2s.

As argued above, p̄(s) → H and p(s) → H as δ → 1. This implies that v4(s) → (v −H)

as δ → 1. From the result of the two player one-sided asymmetric information game, we

know that vB(s) → H as δ → 1. Since v−M > v−H, we have Πp(s) > Πp̄(s) as δ → 1. From

lemma (3) we can infer that both βp
s ’s and β2s are positive. Hence, there exists a threshold

for δ such that if δ crosses that threshold, Πp(s) > Πp̄(s). This is not possible in equilibrium.

Thus, for high δ, the support of offers can have only one point. The same arguments hold

for the other buyer as well. Hence, each buyer while offering to SI has a one-point support.

Next, we establish that both buyers should make the same offer. If they make different offers,

then as explained before, for δ high enough the buyer making the higher offer can profitably

deviate by making the lower offer. However, in equilibrium it is not possible to have both

buyers making the same offer to SI
24

Hence, when agents are patient enough, in equilibrium both buyers cannot offer to both

sellers with a positive probability. This concludes the proof of the lemma.

In the following lemma we show that in any stationary equilibrium of the four player

game, as players get patient enough, SM always gets offers from two buyers with a positive

probability.

Lemma 16 In any stationary equilibrium belonging to the set of equilibria considered, there

exists a threshold of δ such that if δ exceeds that threshold, both buyers make offers to SM

with positive probability.

Proof. Suppose there exists a stationary equilibrium where SM gets offers from only one

buyer , say B1. First, we argue that in such a stationary equilibrium, if the buyer offering

to SM offers something greater than or equal to M , then SM accepts it immediately. To

explain this, let pm ≥ M be the offer made by the buyer who makes offers to SM . Then, SM

24These arguments would also work even if the supports were not taken to be symmetric. In that case,
let p(s) be the minimum of the lower bounds and p̄(s) be the maximum of the upper bounds. If these are
associated with the same buyer, then same arguments hold. If not, then the buyer with the higher upper
bound can proftibaly deviate by shifting its mass to p(s).
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on rejecting this offer either gets back a two- player game or a four-player game. In either

case, she cannot expect to get anything more than pm. Hence, she immediately accepts it.

This implies that if there is a stationary equilibrium where SM gets offers from only one

buyer then that buyer should always offer M to SM and SM immediately accepts it.

There can, therefore, be two possibilities. Either SI gets an offer only from B2 or from

both B1 and B2 with positive probability. Consider the first case. Since SM will accept the

offer immediately and some s-type SI should always accept, B2, must be making an offer

greater than or equal to pe, such that

pe = (1− δ)s+ δ(H − ϵ)

where ϵ > 0 and ϵ → 0 as δ → 1. This is because in equilibrium, if SI rejects an offer then

next period she faces a two-player game. This game has a unique equilibrium and the price

offers in that equilibrium goes to H as δ → 1.

From this we can infer that there exists a threshold of δ such that if δ exceeds that

threshold then pe > M .

Hence, B2 can profitably deviate, contradicting the hypothesis of equilibrium.

In the latter case,we know that B1 offers to both SI and SM with positive probability

and B2 makes offers only to SI . To get the offer accepted by a positive mass of sellers, for

high values of δ that offer should be close to H and thus the payoff to B1 from making offers

to SI should be close to (v − H). On the other hand, the payoff to B1 from making offers

to SM is (v −M). However, in equilibrium, the buyer has to be indifferent between making

offers to SI and SM . Hence, it is not possible to have a stationary equilibrium where SM

gets offers from only one buyer. This concludes the proof.

From the characteristics of the restricted set of equilibria being considered, we know that

SM always gets an offer with a positive probability. The above lemma then allows us to infer

that, in any stationary equilibrium of the four player game, both buyers should offer to SM

with positive probability. From our arguments and hypothesis, we know that both buyers

cannot make offers to only one seller (SI or SM) and both buyers cannot randomise between

making offers to both sellers. Hence, we can infer that one of the buyers has to make offers

to SM only and the other buyer should randomise between making offers to SI and SM .

The following lemma now shows that for any s ∈ (L,H], any equilibrium in this restricted

set possesses the characteristic that the price offers to all sellers approach H as δ → 1.

Lemma 17 For a given s, in any hypothesised equilibrium, price offers to all sellers go to

H as δ → 1.

Proof. Let p̄(s) be the upper bound of the support of offers to SM .
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SM always accepts an equilibrium offer immediately. Let s
′
be the updated posterior

following a rejection by the informed seller. Hence, if the s
′
-type SI rejects an equilibrium

offer, she gets back a two-player game with one-sided asymmetric information. Thus, the

buyer offering to SI in a period must offer at least pe such that

pe − s
′
= δ(H − ϵ− s

′
) ⇒ pe = (1− δ)s

′
+ δ(H − ϵ)

where ϵ > 0 and ϵ → 0 as δ → 1.

Consider B1, who is randomising between making offers to SI and SM . When offering to

SI , B1 must offer pe and it must be the case that

(v − pe)α(s) + (1− α(s))δ{v − (H − ϵ)} = v − p̄(s)

where α(s) is the probability with which the offer is accepted by the informed seller. This

follows from the fact that B1 must be indifferent between offering to SI and SM . The L.H.S

of the above equality is the payoff to B1 from offering to SI and the R.H.S is the payoff to

him from offering to SM . Since in any hypothesized equilibrium, SM always gets an offer in

period 1 and SM accepts an equilibrium offer immediately, SI , by rejecting an equilibrium

offer, always gets back a two-player game with one-sided asymmetric information. Hence, the

payoff to the buyer from offering to SI is the same as in the two-player game with one-sided

asymmetric information. This implies that

(v − pe)α(s) + (1− α(s))δ{v − (H − ϵ)} = vB(s)

Thus, we can conclude that vB(s) = v − p̄(s).

We will now show that the upper bound of the support of offers to SM is strictly greater

than pe. We have

(v − pe)− δ{v − (H − ϵ)} = v(1− δ) + δ(H − ϵ)− δ(H − ϵ)− (1− δ)s
′

= (1− δ)(v − s
′
) > 0

for δ < 1. This implies that

v − pe > δ{v − (H − ϵ)}

Since (v − p̄(s)) is a convex combination of v − pe and δ{v − (H − ϵ)}, we have

v − pe > v − p̄(s
′
) ⇒ p̄(s) > pe
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Next, we will argue that as δ → 1, the support of offers to SM from any buyer is bounded

below by pe. Consider a buyer who makes an offer of pe to SM in equilibrium. Then, if qe is

the probability with which this offer gets accepted, we have

(v − pe)qe + (1− qe)δvB(s) = v − p̄(s)

This follows since SM always accepts an offer in equilibrium immediately, this buyer’s offer

to SM gets rejected only when the other buyer also makes an offer to SM .

This gives us,

qe =
(v − p̄(s))− δvB(s)

(v − pe)− δvB(s)
=

(1− δ)(v − p̄(s))

(v − pe)− δ(v − p̄(s))

⇒ qe =
1

v
v−p̄(s)

+ δp̄(s)−pe

(1−δ)(v−p̄(s))

and

qe → 0 as δ → 1

This shows that in equilibrium, as δ → 1, any offer to SM that is less than or equal to pe

always gets rejected. Since we have argued earlier that in equilibrium, no buyer should make

an offer to SM that she always rejects, we can infer that the support of offers to SM from

any buyer is bounded below by pe as δ approaches 1. Hence, in any arbitrary stationary

equilibrium of this kind, the price offers to all sellers are bounded below by pe as δ approaches

1. However, as δ → 1, pe → H. Hence, as δ → 1, the support of offers to SM from any buyer

collapses and hence price offers to all sellers converge to H.

Thus, we have shown that for any stationary equilibrium in the set of equilibria consid-

ered, one of the buyers randomises between making offers to SM and SI and the other buyer

makes offers to SM only. Further, as δ → 1, price offers in all transactions in these stationary

equilibria go to H. This concludes the proof of the proposition.

We will now argue that there does not exist any stationary equilibrium where both buyers

offer only to SI . This is done in the following lemma.

Lemma 18 Let S be the set of all posteriors (s < H) such that for s ∈ S, it is possible to

have a stationary equilibrium where both buyers offer only to SI . The set S is empty

Proof. We begin the proof by first showing that the set Sc is non-empty. Suppose not.

Then, for all s, it is possible to have a stationary equilibrium where both buyers make offers

only to SI . In this case, price offers can never exceed M . This is because SM does not get
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any offer in the presence of all four players. Thus, if any buyer unilaterally deviates and

offers a price greater than or equal to M to SM , SM will accept it.

Let p̄ be the largest price offer, for any s in such an equilibrium. (Clearly, such an offer

exists.) This offer is accepted by any s
′
-type SI (s ≤ s

′
< H) with probability 1, since

the payoff from rejecting can be at most δ(p̄ − s
′
) and δ < 1. But then, in the following

period, the posterior is H (by Bayes’ Theorem) and, therefore, as δ → 1, the payoff to SI

from such a continuation game is close to H − s
′
(> M − s

′
). Since p̄ ≤ M , the s

′
-type

SI can unilaterally deviate to get a higher payoff and hence, this cannot be an equilibrium.

This shows that Sc is non-empty.

Suppose now that S is non-empty. Consider any s ∈ S. No equilibrium can involve offers

that are rejected by all s < H types. Therefore, some s < H types must accept an offer

with positive probability. This implies (by Bayes’ Theorem and δ < 1) that the sequence

of prices must be increasing. Also, by hypothesis, the price is bounded above by M. Let

p̄
′
be the largest price offer in such an equilibrium. As argued before, p̄

′ ≤ M . There are

two possibilities. Either the updated posterior conditional on p̄
′
being rejected is in S or it

is in Sc. In the former case, SI should accept the offer with probability 1 and the updated

posterior is H where the equilibrium price offer must be H > M, leading to the existence

of a profitable deviation, for δ sufficiently high. For the latter case, if δ is high then from

proposition (3) we know that for any stationary equilibrium all offers converge to H as δ → 1.

Once again, this implies the existence of a profitable deviation for the SI of type s which

accepts the equilbrium offer. Hence, we cannot have S non-empty. This concludes the proof.

We now state our main result of the paper in the theorem below

Theorem 2 In any arbitrary stationary equilibrium of the four-player game, as the discount

factor goes to 1, price offers in all transactions converge to H for all values s ∈ [L,H).

Proof. The proof the theorem follows directly from proposition (3) and lemma (18).

H.2.1 Characterisation of a stationary equilibrium

We start this subsection by proving an analogue of the competition lemma. From the two-

player game, we know that the number of periods for which the game with one-sided asym-

metric information would last is bounded above by N∗.

Lemma 19 For t ≥ 1, ..., N∗, define p̄t and p
′
t as

p̄t = v − [(v − pt)α+ (1− α)δ(v − p̄t−1)]
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p
′

t = M + δ(1− α)(p̄t−1 −M)

where α ∈ (0, 1) and p̄0 = H.

Then there exists δ
′ ∈ (0, 1) such that for δ > δ

′
and for all t ∈ {1, 2, 3, ..., N∗} we have

p̄t > p
′

t

Proof.

p̄t − p
′

t = v − [(v − pt)α + (1− α)δ(v − p̄t−1)]

−M − δ(1− α)(p̄t−1 −M)

= (1− δ)(v −M) + α[pt − δM − (1− δ)v]

The first term is always positive. Let us consider the second term. The coefficient of α is

positive for δ = 1. This is because pt → H as δ → 1. Hence, there exists a δ
′
such that when

δ > δ
′
, the term is positive.

This concludes the proof.

For each δ ∈ (0, 1) we can find a t such that s ∈ (st+1, st]. The sequence {st+1, st, ..., s3, s2}
is derived from and is identical with the same sequence in the two player game. Given these,

we can evaluate vB(s) as

(v − pt)
[G(st−1)−G(s)]

1−G(s)
+

1−G(st−1)

1−G(s)
δ(vB(s

t−1))

for s ≤ s2.

For s > s2, vB(s) = v −H.

Define p̄(s) as,

p̄(s) = v − vB(s)

As before, we first conjecture an equilibrium and derive it and then prove existence. We

refer to the seller with known valuation as SM and the one with private information as SI .

The following proposition describes the equilibrium.

Proposition 4 There exists a δ∗ ∈ (0, 1) such that if δ > δ∗, then for all s ∈ (L,H) there

exists a stationary perfect Bayes’ equilibrium as follows:

(i) One of the buyers (say B1) will make offers to both SI and SM with positive probability.

The other buyer B2 will make offers to SM only.

(ii) B2 while making offers to SM will put a mass point at p
′

l(s) and will have an abso-

lutely continuous distribution of offers from pl(s) to p̄(s) where p
′

l(s) (pl(s)) is the minimum

acceptable price to SM when she gets one (two) offer(s). For a given s, p̄(s) is the upper
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bound of the price offer SM can get in the described equilibrium (p
′

l(s) < pl(s) < p̄(s)). B1

while making offers to SM will have an absolutely continuous (conditional) distribution of

offers from pl(s) to p̄(s), putting a mass point at pl(s).

(iii) B1 while making offers to SI on the equilibrium path behaves exactly in the same

manner as in the two player game with one-sided asymmetric information.

(iv) Each buyer obtains a payoff of vB(s).

(Out-of-equilibrium analysis is contained in appendix (E) and (F) for public and private

offers respectively.)

Proof. Suppose δ > δ∗. Then assuming existence, we first derive the equilibrium.

Define p
′

l(s) as,

p
′

l(s) = M + δ(1− α(s))[Est−1(p)−M ]

where α(s) = 1−F (st−1)
1−F (s)

.

This is the minimum acceptable price for SM , when she gets only one offer. Since

Est−1(p) ≤ p̄t−1, from lemma (19) we can say that p̄(s) > p
′

l(s).

Suppose there exists a pl(s) ∈ (p
′

l(s), p̄(s)) such that

pl(s) = M + δ(Es(p)−M)

We can now derive the equilibrium as conjectured in the same way as we had done for

the discrete types case.

Now we shall prove existence with the help of the following two lemmas.

Lemma 20 If s ∈ (s2, H], then the equilibrium is identical to that of the benchmark case

Proof. From the equilibrium of the two player game with one-sided asymmetric information

we know that the buyer always offers H to the seller, who accepts it with probability 1. Thus,

in the four player game, we will have an equilibrium identical to the one described in the

benchmark case.

Lemma 21 If there exists a δ̄ ∈ (δ
′
, 1) such that for δ ≥ δ̄ and for all t < T (T < N∗) an

equilibrium exists for s ∈ (st, 1], then there exists a δ∗t ≥ δ̄ such that, for all δ ∈ (δ∗t , 1) an

equilibrium also exists for s ∈ (st+1, st].

We relegate the proof of this lemma to appendix (G).

The proof of the proposition now follows from lemma (20) and lemma (21).
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I Ep(π) > M

Suppose not. This means that Ep(π) = M . The implication of this is that the seller SM

in equilibrium only gets offer(s) equal to M . Thus, in that case SM can get offers from one

buyer only and the offer is always equal to M . SM always accepts this offer immediately

as by rejecting she cannot get anything more. hence the equilibrium payoff of this buyer

is v −M . The other buyer is making offers to SI only. Since, SM immediately accepts an

offer, the payoff to her is never greater than vB(π) where vB(π) is the payoff to a buyer in

the two-player game with one sided asymmetric information. As δ → 1, vB(π) → H. Hence,

this buyer can profitably deviate by offering to SM . Thus, we must have Ep(π) > M .

J (v − p2(π)) > v4(π)

Since Ep(π) − M is the expected payoff to the seller SM in equilibrium, there is at least

one price offer by the buyer which is greater than or equal to Ep(π). Hence, we must have

v4(π) ≤ (v − Ep(π)). This gives us

(v − p2(π)) = δ(v − Ep(π)) + (1− δ)(v −M) > (v − Ep(π)) ≥ v4(π)

This concludes the proof.
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